Citation: Wenqiong Chen, Yongji Guan, Jiao Zhang, Junjie Pei, Xiaoping Zhang, Youquan Deng. Atomistic Insight into Changes in the Vibrational Spectrum of Ionic Liquids under External Electric Field[J]. Acta Physico-Chimica Sinica, ;2021, 37(10): 200100. doi: 10.3866/PKU.WHXB202001004 shu

Atomistic Insight into Changes in the Vibrational Spectrum of Ionic Liquids under External Electric Field

  • Corresponding author: Xiaoping Zhang, zxp@lzu.edu.cn Youquan Deng, ydeng@licp.cas.cn
  • Received Date: 2 January 2020
    Revised Date: 28 February 2020
    Accepted Date: 19 March 2020
    Available Online: 23 March 2020

    Fund Project: the National Key Research and Development Program of China 2017YFA0403101the Lanzhou University International Teacher Postdoctoral Scholarship Fund and the Fundamental Research Funds for the Central Universities, China lzujbky-2018-it62

  • Vibrational spectroscopy is a powerful tool for studying the microstructure of liquids, and anatomizing the nature of the vibrational spectrum (VS) is promising for investigating changes in the properties of liquid structures under external conditions. In this study, molecular dynamics (MD) simulations have been performed to explore changes in the VS of 1-ethyl-3-methylimidazolium hexafluorophosphate ([Emim][PF6]) ionic liquid (IL) under an external electric field (EEF) ranging from 0 to 10 V·nm-1 at 350 K. First, the vibrational spectra for [Emim][PF6] IL as well as its cation and anion are separately obtained, and the peaks are strictly assigned. The results demonstrate that the VS calculated by MD simulation can well reproduce the main characteristic peaks in the experimentally measured spectrum. Then, the vibrational spectra of the IL under various EEFs from 0 to 10 V·nm-1 are investigated, and the intrinsic origin of the changes in the vibrational bands (VBs) at 50, 183, 3196, and 3396 cm-1 is analyzed. Our simulation results indicate that the intensities of the VBs at 50 and 183 cm-1 are enhanced. In addition, the VB at 50 cm-1 is redshifted by about 16 cm-1 as the EEF is varied from 0 to 2 V·nm-1, and the redshift wavenumber increases to 33 cm-1 as the EEF is increased to 3 V·nm-1 and beyond. However, the intensities of the VBs at 3196 and 3396 cm-1 show an obvious decrease. Meanwhile, the VB at 3396 cm-1 is redshifted by about 16 cm-1 when the EEF increases to 3 V·nm-1, and the redshift increases to 33 cm-1 with an increase in the EEF beyond 4 V·nm-1. The intensity of the VB at 50 cm-1 increases because of the increase in the total dipole moment of each anion and cation (from 4.34 to 5.46 D), and the redshift is attributed to the decrease in the average interaction energy per ion pair (from -378.7 to -298.0 kJ·mol-1) with increasing EEF. The intensity of the VB at 183 cm-1 increases on account of the more consistent orientations for cations in the system with increasing EEF. The VB at 3196 cm-1 weakens visibly because a greater number of hydrogen atoms appear around the carbon atoms on the methyl/ethyl side chains and the vibrations of the corresponding carbon-hydrogen bonds are suppressed under the action of the EEF. Furthermore, the intensity of the VB at 3396 cm-1 decreases due to the decrease in the intermolecular +C-H···F- hydrogen bonds (HBs), while the relaxation effect that is beneficial for the formation of HBs simultaneously exists in the system under the varying EEF, thus causing a redshift of the VB at 3396 cm-1.
  • 加载中
    1. [1]

      Hallett, J. P.; Welton, T. Chem. Rev. 2011, 111, 3508. doi: 10.1021/cr1003248  doi: 10.1021/cr1003248

    2. [2]

      Chiappe, C.; Pieraccini, D. J. Phys. Org. Chem. 2005, 18, 275. doi: 10.1002/poc.863  doi: 10.1002/poc.863

    3. [3]

      Earle, M. J.; Seddon, K. R. Pure Appl. Chem. 2000, 72, 1391. doi: 10.1351/pac200072071391  doi: 10.1351/pac200072071391

    4. [4]

      Welton, T. Coordin. Chem. Rev. 2004, 248, 2459. doi: 10.1016/j.ccr.2004.04.015  doi: 10.1016/j.ccr.2004.04.015

    5. [5]

      Plechkova, N. V.; Seddon, K. R. Chem. Soc. Rev. 2008, 37, 123. doi: 10.1039/b006677j  doi: 10.1039/b006677j

    6. [6]

      Thomas, M.; Brehm, M.; Holloczki, O.; Kelemen, Z.; Nyulaszi, L.; Pasinszki, T.; Kirchner, B. J. Chem. Phys. 2014, 141, 024510. doi: 10.1063/1.4887082  doi: 10.1063/1.4887082

    7. [7]

      Heyden, M.; Sun, J.; Forbert, H.; Mathias, G.; Havenith, M.; Marx, D. J. Phys. Chem. Lett. 2012, 3, 2135. doi: 10.1021/jz300748s  doi: 10.1021/jz300748s

    8. [8]

      Ishiyama, T.; Takahashi, H.; Morita, A. J. Phys.: Condens. Matter 2012, 24, 124107. doi: 10.1088/0953-8984/24/12/124107  doi: 10.1088/0953-8984/24/12/124107

    9. [9]

      Kiefer, J.; Fries, J.; Leipertz, A. Appl. Spectrosc. 2007, 61, 1306. doi: 10.1366/000370207783292000  doi: 10.1366/000370207783292000

    10. [10]

      Bhargava, B. L.; Balasubramanian, S. Chem. Phys. Lett. 2006, 417, 486. doi: 10.1016/j.cplett.2005.10.050  doi: 10.1016/j.cplett.2005.10.050

    11. [11]

      Katsyuba, S. A.; Zvereva, E. E.; Vidis, A.; Dyson, P. J. J. Phys. Chem. A 2007, 111, 352. doi: 10.1021/jp064610i  doi: 10.1021/jp064610i

    12. [12]

      Jeon, Y.; Sung, J.; Seo, C.; Lim, H.; Cheong, H.; Kang, M.; Moon, B.; Ouchi, Y.; Kim, D. J. Phys. Chem. B 2008, 112, 4735. doi: 10.1021/jp7120752  doi: 10.1021/jp7120752

    13. [13]

      Heimer, N. E.; Del Sesto, R. E.; Meng, Z. Z.; Wilkes, J. S.; Carper, W. R. J. Mol. Liq. 2006, 124, 84. doi: 10.1016/j.molliq.2005.08.004  doi: 10.1016/j.molliq.2005.08.004

    14. [14]

      Zhou, G. B.; Li, Y. Z.; Yang, Z.; Fu, F. J.; Huang, Y. P.; Wan, Z.; Li, L.; Chen, X. S.; Hu, N.; Huang, L. L. J. Phys. Chem. C 2016, 120, 5033. doi: 10.1021/acs.jpcc.6b00307  doi: 10.1021/acs.jpcc.6b00307

    15. [15]

      Xuan, X.; Guo, M.; Pei, Y.; Zheng, Y. Spectrochim. Acta A, Mol. Biomol. Spectrosc. 2011, 78, 1492. doi: 10.1016/j.saa.2011.01.039  doi: 10.1016/j.saa.2011.01.039

    16. [16]

      Fumino, K.; Wulf, A.; Ludwig, R. Angew. Chem. Int. Ed. 2008, 47, 3830. doi: 10.1002/anie.200705736  doi: 10.1002/anie.200705736

    17. [17]

      Fumino, K.; Peppel, T.; Geppert-Rybczynska, M.; Zaitsau, D. H.; Lehmann, J. K.; Verevkin, S. P.; Kockerling, M.; Ludwig, R. Phys. Chem. Chem. Phys. 2011, 13, 14064. doi: 10.1039/c1cp20732f  doi: 10.1039/c1cp20732f

    18. [18]

      Brela, M. Z.; Kubisiak, P.; Eilmes, A. J. Phys. Chem. B 2018, 122, 9527. doi: 10.1021/acs.jpcb.8b05839  doi: 10.1021/acs.jpcb.8b05839

    19. [19]

      Dhumal, N. R.; Singh, M. P.; Anderson, J. A.; Kiefer, J.; Kim, H. J. J. Phys. Chem. C 2016, 120, 3295. doi: 10.1021/acs.jpcc.5b10123  doi: 10.1021/acs.jpcc.5b10123

    20. [20]

      Liu, T.; Danten, Y.; Grondin, J.; Vilar, R. J. Raman Spectrosc. 2016, 47, 449. doi: 10.1002/jrs.4835  doi: 10.1002/jrs.4835

    21. [21]

      Liu, J.; Kim, H.; Dhumal, N. R.; Kim, H. J. J. Mol. Liq. 2019, 292, 111282. doi: 10.1016/j.molliq.2019.111282  doi: 10.1016/j.molliq.2019.111282

    22. [22]

      Paschoal, V. H.; Faria, L. F. O.; Ribeiro, M. C. C. Chem. Rev. 2017, 117, 7053. doi: 10.1021/acs.chemrev.6b00461  doi: 10.1021/acs.chemrev.6b00461

    23. [23]

      Wang, Y.; Voth, G. A. J. Am. Chem. Soc. 2005, 127, 12192. doi: 10.1021/ja053796g  doi: 10.1021/ja053796g

    24. [24]

      Daily, J. W.; Micci, M. M. J. Chem. Phys. 2009, 131, 094501. doi: 10.1063/1.3197850  doi: 10.1063/1.3197850

    25. [25]

      Shi, R.; Wang, Y. J. Phys. Chem. B 2013, 117, 5102. doi: 10.1021/jp311017r  doi: 10.1021/jp311017r

    26. [26]

      Ricks-Laskoski, H. L.; Snow, A. W. J. Am. Chem. Soc. 2006, 128, 12402. doi: 10.1021/ja064264i  doi: 10.1021/ja064264i

    27. [27]

      Wang, Y. J. Phys. Chem. B 2009, 113, 11058. doi: 10.1021/jp906228d  doi: 10.1021/jp906228d

    28. [28]

      English, N. J.; Mooney, D. A.; O'Brien, S. Mol. Phys. 2011, 109, 625. doi: 10.1080/00268976.2010.544263  doi: 10.1080/00268976.2010.544263

    29. [29]

      Chen, W. Q.; Guan, Y. J.; Zhang, X. P.; Deng, Y. Q. Acta Phys. -Chim. Sin. 2018, 34, 912.  doi: 10.3866/PKU.WHXB201801091

    30. [30]

      Martinez, L.; Andrade, R.; Birgin, E. G.; Martinez, J. M. J. Comput. Chem. 2009, 30, 2157. doi: 10.1002/jcc.21224  doi: 10.1002/jcc.21224

    31. [31]

      Humphrey, W.; Dalke, A.; Schulten, K. J. Mol. Graph. 1996, 14, 33. doi: 10.1016/0263-7855(96)00018-5  doi: 10.1016/0263-7855(96)00018-5

    32. [32]

      Todorov, I. T.; Smith, W.; Trachenko, K.; Dove, M. T. J. Mater. Chem. 2006, 16, 1911. doi: 10.1039/b517931a  doi: 10.1039/b517931a

    33. [33]

      Lopes, J. N. C.; Padua, A. A. H. J. Phys. Chem. B 2004, 108, 16893. doi: 10.1021/jp0476545  doi: 10.1021/jp0476545

    34. [34]

      Jorgensen, W. L.; Maxwell, D. S.; TiradoRives, J. J. Am. Chem. Soc. 1996, 118, 11225. doi: 10.1021/ja9621760  doi: 10.1021/ja9621760

    35. [35]

      Kaminski, G.; Jorgensen, W. L. J. Phys. Chem. 1996, 100, 18010. doi: 10.1021/jp9624257  doi: 10.1021/jp9624257

    36. [36]

      Essmann, U.; Perera, L.; Berkowitz, M. L.; Darden, T.; Lee, H.; Pedersen, L. G. J. Chem. Phys. 1995, 103, 8577. doi: 10.1063/1.470117  doi: 10.1063/1.470117

    37. [37]

      Nose, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334  doi: 10.1063/1.447334

    38. [38]

      Hoover, W. G. Phys. Rev. A Gen. Phys. 1985, 31, 1695. doi: 10.1103/PhysRevA.31.1695  doi: 10.1103/PhysRevA.31.1695

    39. [39]

      Kowsari, M. H.; Alavi, S.; Ashrafizaadeh, M.; Najafi, B. J. Chem. Phys. 2008, 129, 224508. doi: 10.1063/1.3035978  doi: 10.1063/1.3035978

    40. [40]

      Praprotnik, M.; Janezic, D.; Mavri, J. J. Phys. Chem. A 2004, 108, 11056. doi: 10.1021/jp046158d  doi: 10.1021/jp046158d

    41. [41]

      Koddermann, T.; Fumino, K.; Ludwig, R.; Canongia Lopes, J. N.; Padua, A. A. ChemPhysChem 2009, 10, 1181. doi: 10.1002/cphc.200900144  doi: 10.1002/cphc.200900144

    42. [42]

      Talaty, E. R.; Raja, S.; Storhaug, V. J.; Dölle, A.; Carper, W. R. J. Phys. Chem. B 2004, 108, 13177. doi: 10.1021/jp040199s  doi: 10.1021/jp040199s

    43. [43]

      Avena, M.; Marracino, P.; Liberti, M.; Apollonio, F.; English, N. J. J. Chem. Phys. 2015, 142, 141101. doi: 10.1063/1.4917024  doi: 10.1063/1.4917024

    44. [44]

      Marracino, P.; Liberti, M.; d'Inzeo, G.; Apollonio, F. Bioelectromagnetics 2015, 36, 377. doi: 10.1002/bem.21916  doi: 10.1002/bem.21916

    45. [45]

      Chatzipapadopoulos, S.; Zentel, T.; Ludwig, R.; Lutgens, M.; Lochbrunner, S.; Kuhn, O. ChemPhysChem 2015, 16, 2519. doi: 10.1002/cphc.201500433  doi: 10.1002/cphc.201500433

    46. [46]

      Luzar, A.; Chandler, D. Nature 1996, 379, 55. doi: 10.1038/379055a0  doi: 10.1038/379055a0

    47. [47]

      Zhou, G.; Yang, Z.; Fu, F.; Huang, Y.; Chen, X.; Lu, Z.; Hu, N. Ind. Eng. Chem. Res. 2015, 54, 8166. doi: 10.1021/acs.iecr.5b01624  doi: 10.1021/acs.iecr.5b01624

    48. [48]

      Roth, C.; Chatzipapadopoulos, S.; Kerlé, D.; Friedriszik, F.; Lütgens, M.; Lochbrunner, S.; Kühn, O.; Ludwig, R. New J. Phys. 2012, 14, 105026. doi: 10.1088/1367-2630/14/10/105026  doi: 10.1088/1367-2630/14/10/105026

    49. [49]

      Atkins, P.; de Paula, J. Atkins' Physical Chemistry, 7th ed.; Oxford University Press: Oxford, UK, 2002.

    50. [50]

      Zhao, Y.; Dong, K.; Liu, X.; Zhang, S.; Zhu, J.; Wang, J. Mol. Simulat. 2012, 38, 172. doi: 10.1080/08927022.2011.61089  doi: 10.1080/08927022.2011.61089

  • 加载中
    1. [1]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    2. [2]

      Jiajia WangXinXin GeYajing XiangXiaoliang QiYing LiHangbin XuErya CaiChaofan ZhangYulong LanXiaojing ChenYizuo ShiZhangping LiJianliang Shen . An ionic liquid functionalized sericin hydrogel for drug-resistant bacteria-infected diabetic wound healing. Chinese Chemical Letters, 2025, 36(2): 109819-. doi: 10.1016/j.cclet.2024.109819

    3. [3]

      Mengyu ChenQinglin ZhouTianyun QinNingyao SunYuxi ChenYuwei GongXingyi LiJinsong Liu . An ionic liquid-reinforced gelatin hydrogel with strong adhesion, antibacterial and anti-inflammatory properties for treating oral ulcers. Chinese Chemical Letters, 2025, 36(7): 110441-. doi: 10.1016/j.cclet.2024.110441

    4. [4]

      Luyu ZhangZirong DongShuai YuGuangyue LiWeiwen KongWenjuan LiuHaisheng HeYi LuWei WuJianping Qi . Ionic liquid-based in situ dynamically self-assembled cationic lipid nanocomplexes (CLNs) for enhanced intranasal siRNA delivery. Chinese Chemical Letters, 2024, 35(7): 109101-. doi: 10.1016/j.cclet.2023.109101

    5. [5]

      Xia XuGuiqian YangZhen ZhengCody J. WenthurJinyu LiGongyu Li . The sheet-to-helix transition is a potential gas-phase unfolding pathway for a multidomain protein CRM197. Chinese Chemical Letters, 2025, 36(7): 110401-. doi: 10.1016/j.cclet.2024.110401

    6. [6]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    7. [7]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    8. [8]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    9. [9]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    10. [10]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    11. [11]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    12. [12]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    13. [13]

      Wengao ZengYuchen DongXiaoyuan YeZiying ZhangTuo ZhangXiangjiu GuanLiejin Guo . Crystalline carbon nitride with in-plane built-in electric field accelerates carrier separation for excellent photocatalytic hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109252-. doi: 10.1016/j.cclet.2023.109252

    14. [14]

      Ying ChenXingyuan XiaLei TianMengying YinLing-Ling ZhengQian FuDaishe WuJian-Ping Zou . Constructing built-in electric field via CuO/NiO heterojunction for electrocatalytic reduction of nitrate at low concentrations to ammonia. Chinese Chemical Letters, 2024, 35(12): 109789-. doi: 10.1016/j.cclet.2024.109789

    15. [15]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    16. [16]

      Jian WangBaohui WangPin MaYifei ZhangHonghong GongBiyun PengSen LiangYunchuan XieHailong Wang . Regulation of uniformity and electric field distribution achieved highly energy storage performance in PVDF-based nanocomposites via continuous gradient structure. Chinese Chemical Letters, 2025, 36(4): 109714-. doi: 10.1016/j.cclet.2024.109714

    17. [17]

      Ruike HuKangmin WangJunxiang LiuJingxian ZhangGuoliang YangLiqiu WanBijin Li . Extended π-conjugated systems by external ligand-assisted C−H olefination of heterocycles: Facile access to single-molecular white-light-emitting and NIR fluorescence materials. Chinese Chemical Letters, 2025, 36(4): 110113-. doi: 10.1016/j.cclet.2024.110113

    18. [18]

      Hui WangHaodong JiDandan ZhangXudong YangHanchun ChenChunqian JiangWeiliang SunJun DuanWen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200

    19. [19]

      Heng GaoJiwei ZhangPeng ZhanXinyong Liu . AL5E: A breakthrough in broad-spectrum coronavirus inactivation through structure-guided design. Chinese Chemical Letters, 2025, 36(7): 111221-. doi: 10.1016/j.cclet.2025.111221

    20. [20]

      Yixia ZhangCaili XueYunpeng ZhangQi ZhangKai ZhangYulin LiuZhaohui ShanWu QiuGang ChenNa LiHulin ZhangJiang ZhaoDa-Peng Yang . Cocktail effect of ionic patch driven by triboelectric nanogenerator for diabetic wound healing. Chinese Chemical Letters, 2024, 35(8): 109196-. doi: 10.1016/j.cclet.2023.109196

Metrics
  • PDF Downloads(6)
  • Abstract views(369)
  • HTML views(24)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return