Citation: Ran Qin, Sun Tianyang, Han Chongyu, Zhang Haonan, Yan Jian, Wang Jinglun. Natural Polyphenol Tannic Acid as an Efficient Electrolyte Additive for High Performance Lithium Metal Anode[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 191206. doi: 10.3866/PKU.WHXB201912068 shu

Natural Polyphenol Tannic Acid as an Efficient Electrolyte Additive for High Performance Lithium Metal Anode

  • Corresponding author: Wang Jinglun, jlwang@hnust.edu.cn
  • Received Date: 27 December 2019
    Revised Date: 16 January 2020
    Accepted Date: 6 March 2020
    Available Online: 17 March 2020

    Fund Project: The project was supported by the Doctoral Foundation of Hunan University of Science and Technology, China (E518B1), 2019 Undergraduate Student Scientific Research Innovation Plan "Challenge Cup Project" of Hunan University of Science and Technology, China (TZ9003)the Doctoral Foundation of Hunan University of Science and Technology, China E518B12019 Undergraduate Student Scientific Research Innovation Plan "Challenge Cup Project" of Hunan University of Science and Technology, China TZ9003

  • As the application of lithium-ion batteries in advanced consumer electronics, energy storage systems, plug-in hybrid electric vehicles, and electric vehicles increases, there has emerged an urgent need for increasing the energy density of such batteries. Lithium metal anode is considered as the "Holy Grail" for high-energy-density electrochemical energy storage systems because of its low reduction potential (-3.04 V vs standard hydrogen electrode) and high theoretical specific capacity (3860 mAh·g-1). However, the practical application of lithium metal anode in rechargeable batteries is severely limited by irregular lithium dendrite growth and high reactivity with the electrolytes, leading to poor safety performance and low coulombic efficiency. Recent research progress has been well documented to suppress dendrite growth for achieving long-term stability of lithium anode, such as building artificial protection layers, developing novel electrolyte additives, constructing solid electrolytes, using functional separator, designing composite electrode or three-dimensional lithium-hosted material. Among them, the use of electrolyte additives is regarded as one of the most effective and economical methods to improve the performance of lithium-ion batteries. As a natural polyphenol compound, tannic acid (TA) is significantly cheaper and more abundant compared with dopamine, which is widely used for the material preparation and modification in the field of lithium-ion batteries. Herein, TA is first reported as an efficient electrolyte film-forming additive for lithium metal anode. By adding 0.15% (mass fraction, wt.) TA into the base electrolyte of 1 mol·L-1 LiPF6-EC/DMC/EMC (1 : 1 : 1, by wt.), the symmetric Li|Li cell exhibited a more stable cyclability of 270 h than that of only 170 h observed for the Li|Li cell without TA under the same current density of 1 mA·cm-2 and capacity of 1 mAh·cm-2 (with a cutoff voltage of 0.1 V). Electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), Fourier-transform infrared (FTIR) spectroscopy, cyclic voltammetry (CV), and energy-dispersive X-ray spectroscopy (EDS) analyses demonstrated that TA participated in the formation of a dense solid electrolyte interface (SEI) layer on the surface of the lithium metal. A possible reaction mechanism is proposed here, wherein the small amount of added polyphenol compound could have facilitated the formation of LiF through the hydrolysis of LiPF6, following which the resulting phenoxide could react with dimethyl carbonate (DMC) through transesterification to form a cross-linked polymer, thereby forming a unique organic/inorganic composite SEI film that significantly improved the electrochemical performance of the lithium metal anode. These results demonstrate that TA can be used as a promising film-forming additive for the lithium metal anode.
  • 加载中
    1. [1]

      Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang, Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062.  doi: 10.3866/PKU.WHXB201603231

    2. [2]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    3. [3]

      Zhang, Y.; Zuo, T. T.; Popovic, J.; Lim, K.; Yin, Y. X.; Maier, J.; Guo, Y. G. Mater. Today 2020, 33, 56. doi: 10.1016/j.mattod.2019.09.018  doi: 10.1016/j.mattod.2019.09.018

    4. [4]

      Wu, S. L.; Zhang, Z. Y.; Lan, M. H.; Yang, S. R.; Cheng, J. Y.; Cai, J. J.; Shen, J. H.; Zhu, Y.; Zhang, K. L.; Zhang, W. J. Adv. Mater. 2018, 30, 1705830..doi: 10.1002/adma.201705830  doi: 10.1002/adma.201705830

    5. [5]

      He, Y.; Xu, H. W.; Shi, J. L.; Liu, P. Y.; Tian, Z. Q.; Dong, N.; Luo, K.; Zhou, X. F.; Liu, Z. P. Energy Storage Mater. 2019, 23, 418. doi: 10.1016/j.ensm.2019.04.026  doi: 10.1016/j.ensm.2019.04.026

    6. [6]

      Li, Y. B.; Sun, Y. M.; Pei, A.; Chen, K. F.; Vailionis, A.; Li, Y. Z.; Zheng, G. Y.; Sun, J.; Cui, Y. ACS Central Sci. 2018, 4, 97. doi: 10.1021/acscentsci.7b00480  doi: 10.1021/acscentsci.7b00480

    7. [7]

      Dai, H. L.; Xi, K.; Liu, X.; Lai, C.; Zhang, S. Q. J. Am. Chem. Soc. 2018, 140, 17515. doi: 10.1021/jacs.8b08963  doi: 10.1021/jacs.8b08963

    8. [8]

      Shangguan, X. H.; Xu, G. J.; Cui, Z. L.; Wang, Q. L.; Du, X. F.; Chen, K.; Huang, S. Q.; Jia, G. F.; Li, F. Q.; Wang, X.; et al. Small 2019, 15, 1900269. doi: 10.1002/smll.201900269  doi: 10.1002/smll.201900269

    9. [9]

      Cui, Y. Acta Phys. -Chim. Sin. 2019, 35 (7), 661.  doi: 10.3866/PKU.WHXB201809053

    10. [10]

      Ran, Q.; Han, C. Y.; Tang, A. P.; Chen, H. Z.; Tang, Z. L.; Jiang, K. C.; Mai, Y. J.; Wang, J. L. Solid State Ionics 2020, 334, 115095. doi: 10.1016/j.ssi.2019.115095  doi: 10.1016/j.ssi.2019.115095

    11. [11]

      You, J. H.; Zhang, S. J.; Deng, L.; L, M. Z.; Zheng, X. M.; Li, J. T.; Zhou, Y.; Huang, L.; Sun, S. G. Electrochim. Acta 2019, 299, 636. doi: 10.1016/j.electacta.2019.01.045  doi: 10.1016/j.electacta.2019.01.045

    12. [12]

      Wang, Q.; Zhang, H.; Cui, Z.; Zhou, Q.; Shangguan, X.; Tian, S.; Zhou, X.; Cui, G. Energy Storage Mater. 2019, 23, 466. doi: 10.1016/j.ensm.2019.04.016  doi: 10.1016/j.ensm.2019.04.016

    13. [13]

      Song, R. S.; Wang, Bo.; Xie, Y.; Ruan, T. T.; Wang, F.; Yuan, Y.; Wang, D. L.; Dou, S. X. J. Mate. Chem. A 2018, 6, 17967. doi: 10.1039/C8TA06775a  doi: 10.1039/C8TA06775a

    14. [14]

      Jin, S.; Jiang, Y.; Ji, H. X.; Yu, Y. Adv. Mater. 2018, 30, 1802014. doi: 10.1002/adma.201802014  doi: 10.1002/adma.201802014

    15. [15]

      Shen, X.; Chen, X. B.; Shi, P.; Huang, J. Q.; Zhang, X. Q.; Yan, C.; Li, T.; Zhang, Q. J Energy Chem. 2019, 37, 29. doi: 10.1016/j.jechem.2018.11.016  doi: 10.1016/j.jechem.2018.11.016

    16. [16]

      Guo, F.; Chen, P.; Kang, T.; Wang, Y. L.; Liu, C. H.; Shen, Y. B.; Lu, W.; Chen, L. W. Acta Phys. -Chim. Sin. 2019, 35 (12), 1365.  doi: 10.3866/PKU.WHXB201903008

    17. [17]

      Jia, W. S.; Fan, C.; Wang, L. P.; Wang, Q. J.; Zhao, M. J.; Zhou, A. J.; Li, J. Z. ACS Appl. Mater. Interfaces 2016, 8, 15399. doi: 10.1021/acsami.6b03897  doi: 10.1021/acsami.6b03897

    18. [18]

      Qian, J. F.; Xu, W.; Bhattacharya, P.; Engelhard, M.; Henderson, W. A.; Zhang, Y. H.; Zhang, J. G. Nano Energy 2015, 15, 135. doi: 10.1016/j.nanoen.2015.04.009  doi: 10.1016/j.nanoen.2015.04.009

    19. [19]

      Liu, L. L.; Wang, S. L.; Zhang, Z. Y.; Fan, J. T.; Qi, W.; Chen, S. M. Ionics 2018, 25, 1035. doi: 10.1007/s11581-018-2641-0  doi: 10.1007/s11581-018-2641-0

    20. [20]

      Markevich, E.; Salitra, G.; Aurbach, D. ACS Energy Lett. 2017, 2, 1337. doi: 10.1021/acsenergylett.7b00163  doi: 10.1021/acsenergylett.7b00163

    21. [21]

      Li, S. P.; Fang, S.; Dou, H.; Zhang, X. G. ACS Appl. Mater. Interfaces 2019, 11, 20804. doi: 10.1021/acsami.9b03940  doi: 10.1021/acsami.9b03940

    22. [22]

      Liu, Q. Y.; Yang, G. J.; Liu, S.; Han, M.; Wang, Z. X.; Chen, L. Q. ACS Appl. Mater. Interfaces 2019, 11, 117435. doi: 10.1021/acsami.9b03417  doi: 10.1021/acsami.9b03417

    23. [23]

      Ouyang, Y.; Guo, Y. P.; Li, D.; Wei, Y. Q.; Zhai, T. Y.; Li, H. Q. ACS Appl. Mater. Interfaces 2019, 11, 11360. doi: 10.1021/acsami.8b21420  doi: 10.1021/acsami.8b21420

    24. [24]

      Zhang, J.T.; Yu, L.; Lou, X. W. D. Nano Res. 2017, 10, 4298. doi: 10.1007/s12274-016-1394-1  doi: 10.1007/s12274-016-1394-1

    25. [25]

      Ding, F.; Xu, W.; Graff, G. L.; Zhang, J.; Sushko, M. L.; Chen, X. L.; Shao, Y. Y.; Engelhard, M. H.; Nie, Z. M.; Xiao, J.; et al. J. Am. Chem. Soc. 2013, 135, 4450. doi: 10.1021/ja312241y  doi: 10.1021/ja312241y

    26. [26]

      Zhao, H.J.; Yu, X. Q.; Li, J. D.; Li, B.; Shao, H. Y.; Li, L.; Deng, Y. H. J. Mater. Chem. A 2019, 7, 8700. doi: 10.1039/C9TA00126C  doi: 10.1039/C9TA00126C

    27. [27]

      Yang, Y.; Xiong, J.; Lai, S. B.; Zhou, R.; Zhao, M.; Geng, H. B.; Zhang, Y. F.; Fang, Y. X.; Li, C. C.; Zhao, J. B. ACS Appl. Mater. Interfaces 2019, 11, 6118. doi: 10.1021/acsami.8b20706  doi: 10.1021/acsami.8b20706

    28. [28]

      Oh, J.; Jo, H.; Lee, H.; Kim, H. T.; Lee, Y. M.; Ryou, M. H. J. Power Sources 2019, 430, 130. doi: 10.1016/j.jpowsour.2019.05.003  doi: 10.1016/j.jpowsour.2019.05.003

    29. [29]

      Yue, H. Y; Du, T.; Wang, Q. X.; Shi, Z. P.; Dong, H.Y.; Cao, Z. X.; Qiao, Y.; Yin, Y. H.; Xing, R. M.; Yang, S. T. ACS Omega 2018, 3, 2699. doi: 10.1021/acsomega.7b01752  doi: 10.1021/acsomega.7b01752

    30. [30]

      Pan, L.; Wang, H. B.; Wu, C. L. M.; Liao, C. B.; Li, L. ACS Appl. Mater. Interfaces 2015, 7, 16003. doi: 10.1021/acsami.5b04245  doi: 10.1021/acsami.5b04245

    31. [31]

      Liao, C. B.; Xu, Q. K.; Wu, C. L. M.; Fang, D. L.; Chen, S. Y.; Chen, S. M.; Luo, J. S.; Li, L. J. Mater. Chem. A 2016, 4, 17215. doi: 10.1039/C6TA07359  doi: 10.1039/C6TA07359

    32. [32]

      Xu, Z.; Ye, H. J.; Li, H. Q.; Xu, Y. Z.; Wang, C. Y.; Yin, J.; Zhu, H. ACS Omega 2017, 2, 1273. doi: 10.1021/acsomega.6b00504  doi: 10.1021/acsomega.6b00504

    33. [33]

      Ding, F. Study on Lithium Metal Anode Material of High Specific Energy Lithium Secondary Battery. Ph. D. Dissertation, Harbin Institute of Technology, Harbin, 2006.

    34. [34]

      Amanchukwu, C. V.; Kong, X.; Qin, J.; Cui, Y.; Bao, Z. N. Adv. Energy Mater. 2019, 9, 1902116. doi: 10.1002/aenm.201902116  doi: 10.1002/aenm.201902116

    35. [35]

      Zhao, C. Z.; Duan, H.; Huang, J. Q.; Zhang, J.; Zhang, Q.; Guo, Y. G.; Wan, L. J. Sci. Chin. Chem. 2019, 62, 1286. doi: 10.1007/s11426-019-9519-9  doi: 10.1007/s11426-019-9519-9

    36. [36]

      Lang, X. D.; He, L. N. Chem. Rec. 2016, 16, 1337. doi: 10.1002/tcr.201500293  doi: 10.1002/tcr.201500293

    37. [37]

      Zhang, X. Q.; Chen, X.; Cheng, X. B.; Li, B. -Q.; Shen, X.; Yan, C.; Huang, J. -Q.; Zhang, Q. Angew. Chem. Int. Ed. 2018, 57, 5301. doi: 10.1002/anie.201801513  doi: 10.1002/anie.201801513

    38. [38]

      Yuan, Y. X.; Wu, F.; Chen, G. H.; Bai, Y.; Wu, C. J. Energy Chem. 2019, 37, 197. doi: 10.1016/j.jechem.2019.03.014  doi: 10.1016/j.jechem.2019.03.014

  • 加载中
    1. [1]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    2. [2]

      Zhuo HanDanfeng ZhangHaixian WangGuorui ZhengMing LiuYanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034

    3. [3]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    4. [4]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    5. [5]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    6. [6]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    7. [7]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    8. [8]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    9. [9]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    10. [10]

      Hao ChenDongyue YangGang HuangXinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059

    11. [11]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    12. [12]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    13. [13]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

    14. [14]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    15. [15]

      Hanmei LüXin ChenQifu SunNing ZhaoXiangxin Guo . Uniform Garnet Nanoparticle Dispersion in Composite Polymer Electrolytes. Acta Physico-Chimica Sinica, 2024, 40(3): 2305016-0. doi: 10.3866/PKU.WHXB202305016

    16. [16]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    19. [19]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    20. [20]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

Metrics
  • PDF Downloads(11)
  • Abstract views(1868)
  • HTML views(513)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return