Citation: Wang Wenyuan, Zhang Jiefu, Li Zhe, Shao Xiang. Atomic Structure and Adsorption Property of the Singly Dispersed Au/Cu(111) Surface Alloy[J]. Acta Physico-Chimica Sinica, ;2020, 36(8): 191103. doi: 10.3866/PKU.WHXB201911035 shu

Atomic Structure and Adsorption Property of the Singly Dispersed Au/Cu(111) Surface Alloy

  • Corresponding author: Shao Xiang, shaox@ustc.edu.cn
  • Received Date: 19 November 2019
    Revised Date: 25 December 2019
    Accepted Date: 27 December 2019
    Available Online: 13 January 2020

    Fund Project: the National Natural Science Foundation of China 21872130the National Key Research and Development Program of China 2017YFA0205003the National Natural Science Foundation of China 91545128The project was supported by the National Natural Science Foundation of China (21872130, 91545128) and the National Key Research and Development Program of China (2017YFA0205003)

  • Atomic-scale characterization of the atomic structure as well as molecular adsorption on an alloy surface plays a vital role in elucidating the catalytic mechanism of effective catalysts. Au-Cu alloy nanoparticles have important applications in catalyzing CO oxidation and CO2 reduction. However, the atomic-scale properties of Au-Cu alloy surfaces are rarely investigated. In particular, the physical and chemical properties of singly-dispersed doping atoms, either Au in Cu or vice versa, as well as their influence on the overall surface properties, have not been studied in detail. In response, we first prepared low-coverage bimetallic Au/Cu(111) and Cu/Au(111) films, which were then annealed at high temperature to realize single atomically-dispersed Au/Cu(111) and Cu/Au(111) surface alloys (SA). We characterized the surface structures and adsorption properties by low-temperature scanning tunneling microscopy and spectroscopy (LT-STM/STS). For the SA-Au/Cu(111) system, we found that Au atoms can be incorporated in both the skin and subsurface layer of the Cu(111) substrate. These species can be readily distinguished from the topography contrast in STM. Moreover, STS measurements showed clear differences between the electronic states of doped Au atoms and the Cu host. In particular, we found that Au in the skin layer was strengthened while the subsurface Au showed weakened filled states at approximately −0.5 eV compared with the Cu(111) surface, which corresponds to the characteristic Shockley state of an Au surface. These altered electronic properties at the sites of doped atoms are also reflected by changes in the interactions with probe molecules. Adsorption experiments showed that Au atoms in the top surface prevented the binding of CO molecules, causing various adsorption vacancies in the CO adlayer. In contrast, the subsurface Au atoms had little influence on surface binding with CO molecules. For the SA-Cu/Au(111) system, we found that Cu atoms tend to aggregate into small clusters in the subsurface region of the Au(111) substrate. Only few Cu atoms can be stabilized at the elbow positions of the reconstructed top surface of Au(111). Adsorption experiments showed that only Cu atoms in the skin layer can adsorb CO molecules at liquid nitrogen temperature, while the subsurface Cu atoms cannot. On the other hand, the Au atoms around the doped Cu atoms do not seem to be influenced at all, possibly because of the weak effect of Cu. These experimental results provide details on the atomistic aspects of Au-Cu alloy surfaces, which can improve our understanding of the catalytic mechanism of Au-Cu alloy catalysts.
  • 加载中
    1. [1]

      Kim, D.; Resasco, J.; Yu, Y.; Asiri, A. M.; Yang, P. D. Nat. Commun. 2014, 5, 4948. doi: 10.1038/ncomms5948  doi: 10.1038/ncomms5948

    2. [2]

      Liu, X. Y.; Wang, A. Q.; Zhang, T.; Su, D. S.; Mou, C. Y. Catal. Today 2011, 160, 103. doi: 10.1016/j.cattod.2010.05.019  doi: 10.1016/j.cattod.2010.05.019

    3. [3]

      Haruta, M. Catal. Today 1997, 36, 153. doi: 10.1016/S0920-5861(96)00208-8  doi: 10.1016/S0920-5861(96)00208-8

    4. [4]

      Thomas, J. M.; Saghi, Z.; Gai, P. L. Top. Catal. 2011, 54, 588. doi: 10.1007/s11244-011-9677-y  doi: 10.1007/s11244-011-9677-y

    5. [5]

      Qiao, B.; Wang, A.; Yang, X.; Allard, L. F.; Jiang, Z.; Cui, Y.; Liu, J.; Li, J.; Zhang, T. Nat. Chem. 2011, 3, 634. doi: 10.1038/nchem.1095  doi: 10.1038/nchem.1095

    6. [6]

      Ranocchiari, M.; Lothschutz, C.; Grolimund, D.; van Bokhoven, J. A. Proc. Roy. Soc. A 2012, 468, 1985. doi: 10.1098/rspa.2012.0078  doi: 10.1098/rspa.2012.0078

    7. [7]

      Flytzani-Stephanopoulos, M.; Gates, B. C. Annu. Rev. Chem. Biomol. 2012, 3, 545. doi: 10.1146/annurev-chembioeng-062011-080939  doi: 10.1146/annurev-chembioeng-062011-080939

    8. [8]

      Chen, J. G.; Menning, C. A.; Zellner, M. B. Surf. Sci. Rep. 2008, 63, 201. doi: 10.1016/j.surfrep.2008.02.001  doi: 10.1016/j.surfrep.2008.02.001

    9. [9]

      Greeley, J.; Mavrikakis, M. Nat. Mater. 2004, 3, 810. doi: 10.1038/nmat1223  doi: 10.1038/nmat1223

    10. [10]

      Rodriguez, J. Surf. Sci. Rep. 1996, 24, 223. doi: 10.1016/0167-5729(96)00004-0  doi: 10.1016/0167-5729(96)00004-0

    11. [11]

      Alexeev, O. S.; Gates, B. C. Ind. Eng. Chem. Res. 2003, 42, 1571. doi: 10.1021/ie020351h  doi: 10.1021/ie020351h

    12. [12]

      Ponec, V. Appl. Catal. A 2001, 222, 31. doi: 10.1016/S0926-860X(01)00828-6  doi: 10.1016/S0926-860X(01)00828-6

    13. [13]

      Huang, L.; Shao, X. Acta Phys. -Chim. Sin. 2018, 34, 1390.  doi: 10.3866/PKU.WHXB201804191

    14. [14]

      Haruta, M.; Yamada, N.; Kobayashi, T.; Iijima, S. J. Catal. 1989, 115, 301. doi: 10.1016/0021-9517(89)90034-1  doi: 10.1016/0021-9517(89)90034-1

    15. [15]

      Haruta, M.; Tsubota, S.; Kobayashi, T.; Kageyama, H.; Genet, M. J.; Delmon, B. J. Catal. 1993, 144, 175. doi: 10.1006/jcat.1993.1322  doi: 10.1006/jcat.1993.1322

    16. [16]

      Haruta, M. Catal. Today 1997, 36, 153. doi: 10.1016/S0920-5861(96)00208-8  doi: 10.1016/S0920-5861(96)00208-8

    17. [17]

      Grisel, R. J. H.; Kooyman, P. J.; Nieuwenhuys, B. E. J. Catal. 2000, 191, 430. doi: 10.1006/jcat.1999.2787  doi: 10.1006/jcat.1999.2787

    18. [18]

      Linke, R.; Schneider, U.; Busse, H.; Becker, C.; Schröder, U.; Castro, G. R.; Wandelt, K. Surf. Sci. 1994, 307, 407. doi: 10.1016/0039-6028(94)90427-8  doi: 10.1016/0039-6028(94)90427-8

    19. [19]

      Qi, Y.; Bian, T.; Choi, S. I.; Jiang, Y.; Jin, C.; Fu, M.; Zhang, H.; Yang, D. Chem. Commun. 2014, 50, 560. doi: 10.1039/c3cc48061e  doi: 10.1039/c3cc48061e

    20. [20]

      Liu, X.; Wang, A.; Wang, X.; Mou, C. Y.; Zhang, T. Chem. Commun. 2008, 3187. doi: 10.1039/b804362k  doi: 10.1039/b804362k

    21. [21]

      Liu, X.; Wang, A.; Li, L.; Zhang, T.; Mou, C. Y.; Lee, J. F. J. Catal. 2011, 278, 288. doi: 10.1016/j.jcat.2010.12.016  doi: 10.1016/j.jcat.2010.12.016

    22. [22]

      Chimentão, R. J.; Medina, F.; Fierro, J. L. G.; Llorca, J.; Sueiras, J. E.; Cesteros, Y.; Salagre, P. J. Mater. Chem. A-Chem. 2007, 274, 159. doi: 10.1016/j.molcata.2007.05.008  doi: 10.1016/j.molcata.2007.05.008

    23. [23]

      Della Pina, C.; Falletta, E.; Rossi, M. J. Catal. 2008, 260, 384. doi: 10.1016/j.jcat.2008.10.003  doi: 10.1016/j.jcat.2008.10.003

    24. [24]

      Kyriakou, G.; Boucher, M. B.; Jewell, A. D.; Lewis, E. A.; Lawton, T. J.; Baber, A. E.; Tierney, H. L.; Stephanopoulos, M. F.; Sykes, E. C. H. Science 2012, 335, 1209. doi: 10.1126/science.1215864  doi: 10.1126/science.1215864

    25. [25]

      Marcinkowski, M.; Jewell, A. D.; Stamatakis, M.; Boucher, M. B.; Lewis, E. A.; Murphy, C. J.; Kyriakou, G.; Sykes, E. C. H. Nat. Mater. 2013, 12, 523. doi: 10.1038/nmat3620  doi: 10.1038/nmat3620

    26. [26]

      Baber, A. E.; Tierney, H. L.; Sykes, E. C. H. ACS Nano 2010, 4, 1637. doi: 10.1021/nn901390y  doi: 10.1021/nn901390y

    27. [27]

      Han, P.; Axnanda, S.; Lyubinetsky, I.; Goodman, D. W. J. Am. Chem. Soc. 2007, 129, 14355. doi: 10.1021/ja074891n  doi: 10.1021/ja074891n

    28. [28]

      Shi, H. X.; Wang, W. Y.; Li, Z.; Wang, L.; Shao, X. Chin. J. Chem. Phys. 2017, 30, 443. doi: 10.1063/1674-0068/30/cjcp1704078  doi: 10.1063/1674-0068/30/cjcp1704078

    29. [29]

      Umezawa, K.; Nakanishi, S. Phys. Rev. B 2000, 63, 035402. doi: 10.1103/PhysRevB.63.035402  doi: 10.1103/PhysRevB.63.035402

    30. [30]

      Wang, L.; Li, P.; Shi, H. X.; Li, Z. Y.; Wu, K.; Shao, X. J. Phys. Chem. C 2017, 121, 7977. doi: 10.1021/acs.jpcc.7b00938  doi: 10.1021/acs.jpcc.7b00938

    31. [31]

      Zhao, X. Y.; Liu, P.; Hrbek, J.; Rodriguez, J. A.; Pérez, M. Surf. Sci. 2005, 592, 25. doi: 10.1016/j.susc.2005.06.035  doi: 10.1016/j.susc.2005.06.035

    32. [32]

      Hwang, R. Q.; Schröder, J.; Günther, C.; Behm, R. J. Phys. Rev. Lett. 1991, 67, 3279. doi: 10.1103/PhysRevLett.67.3279  doi: 10.1103/PhysRevLett.67.3279

    33. [33]

      Brune, H.; Röder, H.; Bromann, K.; Kern, K. Thin Solid Films 1995, 264, 230. doi: 10.1016/0040-6090(94)05821-0  doi: 10.1016/0040-6090(94)05821-0

    34. [34]

      Wang, W.; Shi, H.; Wang, L.; Li, Z.; Shi, H.; Wu, K.; Shao, X. J. Phys. Chem. C 2018, 122, 19551. doi: 10.1021/acs.jpcc.8b04783  doi: 10.1021/acs.jpcc.8b04783

    35. [35]

      Meunier, I.; Tréglia, G.; Gay, J. M.; Aufray, B. Phys. Rev. B 1999, 59, 10910. doi: 10.1103/PhysRevB.59.10910  doi: 10.1103/PhysRevB.59.10910

    36. [36]

      Castro, G. R.; Doyen, G. Surf. Sci. 1994, 307, 384. doi: 10.1016/0039-6028(94)90423-5  doi: 10.1016/0039-6028(94)90423-5

    37. [37]

      Castro, G. R.; Schneider, U.; Busse, H.; Janssens, T.; Wandelt, K. Surf. Sci. 1992, 269, 321. doi: 10.1016/0039-6028(92)91268-G  doi: 10.1016/0039-6028(92)91268-G

    38. [38]

      Besenbacher, F.; Chorkendorff, I.; Clausen, B. S.; Hammer, B.; Molenbroek, A. M.; Nørskov, J. K.; Stensgaard, I. Science 1998, 279, 1913. doi: 10.1126/science.279.5358.1913  doi: 10.1126/science.279.5358.1913

    39. [39]

      Kim, M. J.; Na, H. J.; Lee, K. C.; Yoob, E. A.; Lee, M. Y. J. Mater. Chem. 2003, 13, 1789. doi: 10.1039/b304006m  doi: 10.1039/b304006m

    40. [40]

      Liu, M.; Zhou, W.; Wang, T.; Wang, D.; Liu, L.; Ye, J. Chem. Commun. 2016, 52, 4694. doi: 10.1039/c6cc00717a  doi: 10.1039/c6cc00717a

    41. [41]

      Kuhn, M.; Sham, T. K. Phys. Rev. B 1994, 49, 1647. doi: 10.1103/PhysRevB.49.1647  doi: 10.1103/PhysRevB.49.1647

    42. [42]

      Hammer, B. J. K. N.; Nørskov, J. K. Surf. Sci. 1995, 343, 211. doi: 10.1016/0039-6028(96)80007-0  doi: 10.1016/0039-6028(96)80007-0

    43. [43]

      Libisch, F.; Geringer, V.; Subramaniam, D.; Burgdörfer, J.; Morgenstern, M. Phys. Rev. B 2014, 90, 035442. doi: 10.1103/PhysRevB.90.035442  doi: 10.1103/PhysRevB.90.035442

    44. [44]

      Chen, W.; Madhavan, V.; Jamneala, T.; Crommie, M. F. Phys. Rev. Lett. 1998, 80, 1469. doi: 10.1103/PhysRevLett.80.1469  doi: 10.1103/PhysRevLett.80.1469

    45. [45]

      Bartels, L.; Meyer, G.; Rieder, K. H. Surf. Sci. 1999, 432, 621. doi: 10.1016/S0039-6028(99)00640-8  doi: 10.1016/S0039-6028(99)00640-8

    46. [46]

      Heinrich, A. J.; Lutz, C. P.; Gupta, J. A.; Eigler, D. M. Science 2002, 298, 1381. doi: 10.1126/science.1076768  doi: 10.1126/science.1076768

    47. [47]

      Neef, M.; Doll, K. Surf. Sci. 2006, 600, 1085. doi: 10.1016/j.susc.2005.12.036  doi: 10.1016/j.susc.2005.12.036

    48. [48]

      Li, W.; Kong, L.; Feng, B.; Fu, H.; Li, H.; Zeng, X. C.; Wu, K.; Chen, L. Nat. Commun. 2018, 9, 198. doi: 10.1038/s41467-017-02634-6  doi: 10.1038/s41467-017-02634-6

    49. [49]

      Hammer, B.; Morikawa, Y.; Nørskov, J. K. Phys. Rev. Lett. 1996, 76, 2141. doi: 10.1103/PhysRevLett.76.2141  doi: 10.1103/PhysRevLett.76.2141

    50. [50]

      Mavrikakis, M.; Hammer, B.; Nørskov, J. K. Phys. Rev. Lett. 1998, 81, 2819. doi: 10.1103/PhysRevLett.81.2819  doi: 10.1103/PhysRevLett.81.2819

    51. [51]

      Rodriguez, J. A.; Goodman, D. W. Science 1992, 257, 897. doi: 10.1126/science.257.5072.897  doi: 10.1126/science.257.5072.897

    52. [52]

      Campbell, R. A.; Rodriguez, J. A.; Goodman, D. W. Surf. Sci. 1991, 256, 272. doi: 10.1016/0039-6028(91)90870-X  doi: 10.1016/0039-6028(91)90870-X

    53. [53]

      Rodriguez, J. A.; Goodman, D. W. J. Phys. Chem. 1991, 95, 4196. doi: 10.1021/j100164a008  doi: 10.1021/j100164a008

    54. [54]

      Chen, M. S.; Goodman, D. W. Science 2004, 306, 252. doi: 10.1126/science.1102420  doi: 10.1126/science.1102420

  • 加载中
    1. [1]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    2. [2]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    3. [3]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    4. [4]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    5. [5]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    6. [6]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    7. [7]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    8. [8]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    9. [9]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    12. [12]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    13. [13]

      Yuan Chun Yongmei Liu Fuping Tian Hong Yuan Shu'e Song Wanchun Zhu Yunchao Li Zhongyun Wu Xiaokui Wang Yunshan Bai Li Wang Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Colloidal and Surface Chemical Properties, Molecular Structure and Properties. University Chemistry, 2025, 40(5): 178-188. doi: 10.12461/PKU.DXHX202503053

    14. [14]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    15. [15]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    16. [16]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    18. [18]

      Zhiwen HUANGQi LIUJianping LANG . W/Cu/S cluster-based supramolecular macrocycles and their third-order nonlinear optical responses. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 79-87. doi: 10.11862/CJIC.20240184

    19. [19]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    20. [20]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

Metrics
  • PDF Downloads(20)
  • Abstract views(2489)
  • HTML views(661)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return