Citation: Xie An, Pan Zhonghua, Luo Genggeng. Synthesis of Six Bio-Inspired Nickel-Based Complexes Ligated with Diselenolate Derivatives and Diphosphine Ligands, and Application to Electrocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinica, ;2021, 37(3): 191005. doi: 10.3866/PKU.WHXB201910058 shu

Synthesis of Six Bio-Inspired Nickel-Based Complexes Ligated with Diselenolate Derivatives and Diphosphine Ligands, and Application to Electrocatalytic H2 Evolution

  • Corresponding author: Luo Genggeng, ggluo@hqu.edu.cn
  • Received Date: 28 October 2019
    Revised Date: 8 December 2019
    Accepted Date: 26 December 2019
    Available Online: 31 December 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21641011) and the Fujian Key Laboratory of Functional Materials and Applications, China (fma2017107)the Fujian Key Laboratory of Functional Materials and Applications, China fma2017107the National Natural Science Foundation of China 21641011

  • In recent years, there has been an intense effort to develop renewable alternatives to fossil fuels for meeting the ever-increasing global energy need. Molecular dihydrogen (H2) is the ideal energy carrier for the 21st century because it has high energy density and its combustion releases only water, and electrocatalysis is a powerful tool for its wide use. Developing new H2-evolving molecular electrocatalysts with cheap and earth-abundant elements is highly desirable. Among all kinds of H2-generating catalysts, [NiFe]-hydrogenases (H2ases) have the active site featuring a redox-active {Ni(cysteinate)4} center bridged through two of its cysteine residues to a redox-inactive {Fe(CN2)(CO)} moiety. As a class of known natural enzymes, [NiFe]-H2ases are promising candidates because they have inexpensive nickel and/or iron atoms at the active sites and can catalyze the reversible reduction of H+ to H2 with high efficiency comparable to the noble-metal platinum. However, the catalytic behaviors of most artificial H2ases-like active sites are usually inhibited by the existence of a small amount of O2, which strongly limit their practical application. As such, it is attractive to develop new analogues of enzyme active sites to address this issue. On the other hand, [NiFeSe]-H2ases, which are obtained by the introduction of Se into [NiFe]-H2ases, have exceptional properties conducive for H2 production, such as high H2 generation performance, marginal inhibition by H2, and high tolerance to O2. The mechanistic understanding of [NiFeSe]-H2ases function guides the design and synthesis of Se-substituted Ni-based molecular catalysts, and selection of suitable bio-inspired catalysts enables applications in catalysis for hydrogen evolution reaction (HER). In this contribution, six bio-inspired neutral nickel-based complexes (2a–2c, 3a–3b, 4) with diselenolate derivatives and diphosphine ligands have been prepared and structurally characterized. These complexes are important in the function of [NiFeSe]-hydrogenase models toward their application as electrocatalysts for the HER. The substituent effects of diselenolate and diphosphine ligands on the catalytic activities of hydrogen production by these nickel(Ⅱ) complexes are studied experimentally. When using a glassy carbon electrode, all the complexes are efficient electrocatalysts for H2 production with different turnover frequencies (TOFs) of 12182 s-1 (2a), 15385 s-1 (2b), 20359 s-1 (2c), 106 s-1 (3a), 794 s-1 (3b), 13580 s-1 (4). The present results indicate that the nickel(Ⅱ) complex 2c ligated by a 4, 5-dimethyl-1, 2-benzenediselenolate and 1, 1'-bis(diphenylphosphino)ferrocene ligand, shows the highest efficiency, which surpasses the activity of a previously dppf-supported nickel(Ⅱ) 1, 2-benzenediselenolate with a TOF of 7838 s-1. We believe that our results will encourage the development of the design of highly efficient Ni-based selenolate molecular catalysts.
  • 加载中
    1. [1]

      Chang, J. F.; Xiao, Y.; Luo, Z. Y.; Ge, J. J.; Liu, C. P.; Xing, W. Acta Phys. -Chim. Sin. 2016, 32 (7), 1556.  doi: 10.3866/PKU.WHXB201604291

    2. [2]

      Xiao, A.; Lu, H.; Zhao, Y.; Luo, G. G. Acta Phys. -Chim. Sin. 2016, 32 (12), 2968.  doi: 10.3866/PKU.WHXB201609194

    3. [3]

      Wang, M.; Chen, L.; Sun, L. Energy Environ. Sci. 2012, 5 (5), 6763. doi: 10.1039/C2EE03309G  doi: 10.1039/C2EE03309G

    4. [4]

      Luo, G. G.; Zhang, H. L.; Tao, Y. W.; Wu, Q. Y.; Tian, D.; Zhang, Q. C. Inorg. Chem. Frontier 2019, 6 (2), 354. doi: 10.1039/C8QI01220B  doi: 10.1039/C8QI01220B

    5. [5]

      Zhao, Y.; Wang, Y.; Wu, Q.; Lin, J.; Wu, S.; Hou, W.; Wu, R.; Luo, G. Chin. J. Catal. 2018, 39 (3), 517. doi: 10.1016/S1872-2067(17)62940-1  doi: 10.1016/S1872-2067(17)62940-1

    6. [6]

      Schilter, D.; Camara, J. M.; Huynh, M. T.; Hammes-Schiffer, S.; Rauchfuss, T. B. Chem. Rev. 2016, 116 (15), 8693. doi: 10.1021/acs.chemrev.6b00180  doi: 10.1021/acs.chemrev.6b00180

    7. [7]

      Luo, G. G.; Wang, Y. H.; Wang, J.; Wu, J.; Wu, R. Chem. Commun. 2017, 53 (52), 7007. doi: 10.1039/C7CC01942D  doi: 10.1039/C7CC01942D

    8. [8]

      Parkin, A.; Goldet, G.; Cavazza, C.; Fontecilla-Camps, J. C.; Armstrong, F. A. J. Am. Chem. Soc. 2008, 130 (40), 13410. doi: 10.1021/ja803657d  doi: 10.1021/ja803657d

    9. [9]

      Wombwell, C.; Caputo, C. A.; Reisner, E. Acc. Chem. Res. 2015, 4 8(11), 2858. doi: 10.1021/acs.accounts.5b00326  doi: 10.1021/acs.accounts.5b00326

    10. [10]

      Wombwell, C.; Reisner, E. Chem. -Eur. J. 2015, 21 (22), 8096. doi: 10.1002/chem..201500311  doi: 10.1002/chem..201500311

    11. [11]

      Xie, A.; Tao, Y. W.; Peng, C.; Luo, G. G. Inorg. Chem. Commun. 2019, 110, 107598. doi: 10.1016/j.inoche.2019.107598  doi: 10.1016/j.inoche.2019.107598

    12. [12]

      Xie. A.; Pan, Z. H.; Yu, M.; Luo, G. G.; Sun, D. Chin. Chem. Lett. 2019, 30 (1), 225. doi: 10.1016/j.cclet.2018.05.003  doi: 10.1016/j.cclet.2018.05.003

    13. [13]

      Luo, G. G.; Pan, Z. H.; Lin, J. Q.; Sun, D. Dalton Trans. 2018, 47 (44), 15633. doi: 10.1039/C8DT02831A  doi: 10.1039/C8DT02831A

    14. [14]

      Xie, A.; Zhu, J.; Luo, G. G. Int. J. Hydro. Energy. 2018, 43 (5), 2772. doi: 10.1016/j.ijhydene.2017.12.120  doi: 10.1016/j.ijhydene.2017.12.120

    15. [15]

      Luo, G. G.; Fang, K.; Wu. J. H.; Dai, J. C.; Zhao, Q. H. Phys. Chem. Chem. Phys. 2014, 16 (43), 23884. doi: 10.1039/C4CP03343D  doi: 10.1039/C4CP03343D

    16. [16]

      Luo, G. G.; Lu, H.; Zhang, X. L.; Dai, J. C.; Wu, J. H.; Wu, J. J. Phys. Chem. Chem. Phys. 2015, 17 (15), 9716. doi: 10.1039/C5CP00732A  doi: 10.1039/C5CP00732A

    17. [17]

      Luo, G. G.; Fang, K.; Wu, J. H.; Mo, J. Chem. Commun. 2015, 51 (62), 12361. doi: 10.1039/C5CC0389A  doi: 10.1039/C5CC0389A

    18. [18]

      Pan, Z. H.; Tao, Y.W.; He, Q. F.; Wu, Q. Y.; Cheng, L. P.; Wei, Z. H.; Wu, J. H.; Lin, J. Q.; Sun, D.; Zhang, Q. C.; et al. Chem. -Eur. J. 2018, 24 (33), 8275. doi: 10.1002/chem..201801893  doi: 10.1002/chem..201801893

    19. [19]

      Sandman, D. J.; Allen, G. W.; Acampora, L. A.; Stark, J. C.; Jansen, S.; Jones, M. T.; Ashwell, G. J.; Foxman, B. M. Inorg. Chem. 1987, 26 (11), 1664. doi: 10.1021/ic00258a007  doi: 10.1021/ic00258a007

    20. [20]

      Highshi, T. ABSCOR, Empirical Absorption Correction Based on Fourier Series Approximations. Tokyo: Rigaku Corporation, 1995.

    21. [21]

      Sheldrick, G. M. SHELXS-97, Program for X-ray Crystal Structure Determination. Germany: University of Gottingen, 1997.

    22. [22]

      Sheldrick, G. M. SHELXL-97, Program for X-ray Crystal Structure Refinement. Germany: University of Gottingen, 1997.

    23. [23]

      Li, X. C.; Luo, G. G.; Fang, K.; Zhou, J. W.; Zhao, Q. H.; Wu, R. B. Scientia Sinica Chim. 2015, 45 (8), 843.  doi: 10.1360/N5-00046

    24. [24]

      Wakerley, D. W.; Reisner, E. Energy Environ. Sci. 2015, 8 (8), 2283. doi: 10.1039/C5EE01167A  doi: 10.1039/C5EE01167A

    25. [25]

      Garrett, B. R.; Polen, S. M.; Click, K. A.; He, M.; Huang, Z.; Hadad, C. M.; Wu, Y. Inorg. Chem. 2016, 55 (8), 3960. doi: 10.1021/acs.inorgchem.6b00206  doi: 10.1021/acs.inorgchem.6b00206

  • 加载中
    1. [1]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    2. [2]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    3. [3]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    4. [4]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    5. [5]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    6. [6]

      Guilan He Yaofeng Yuan . 手性二茂铁双膦配体Xyliphos的合成及应用. University Chemistry, 2025, 40(8): 130-137. doi: 10.12461/PKU.DXHX202409122

    7. [7]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    8. [8]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    9. [9]

      Hongjie SHENHaozhe MIAOYuhe YANGYinghua LIDeguang HUANGXiaofeng ZHANG . Synthesis, crystal structure, and fluorescence properties of two Cu(Ⅰ) complexes based on pyridyl ligand. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 855-863. doi: 10.11862/CJIC.20250009

    10. [10]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    11. [11]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    12. [12]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    13. [13]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    14. [14]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    15. [15]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    16. [16]

      Xiaoru LIUJinlian SHIYajia ZHENGShuangcun MOZhongxuan XU . Two Ni-based frameworks with helices and dinuclear units constructed from semi-rigid carboxylic acid and imidazole derivatives. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 797-808. doi: 10.11862/CJIC.20240328

    17. [17]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    18. [18]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    19. [19]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    20. [20]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

Metrics
  • PDF Downloads(7)
  • Abstract views(1388)
  • HTML views(133)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return