Citation: Xu henmin, Bian Zhenfeng. Photocatalytic Methane Conversion[J]. Acta Physico-Chimica Sinica, ;2020, 36(3): 190701. doi: 10.3866/PKU.WHXB201907013 shu

Photocatalytic Methane Conversion

  • Corresponding author: Bian Zhenfeng, bianzhenfeng@shnu.edu.cn
  • Received Date: 1 July 2019
    Revised Date: 13 August 2019
    Accepted Date: 29 August 2019
    Available Online: 2 March 2019

    Fund Project: the National Natural Science Foundation of China 21761142011Shanghai Government, China 19160712900the National Natural Science Foundation of China 51572174The project was supported by the National Natural Science Foundation of China (21876114, 21761142011, 51572174), Shanghai Government, China (19160712900), International Joint Laboratory on Resource Chemistry, China (IJLRC), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning, Chinathe National Natural Science Foundation of China 21876114

  • Methane is a promising energy source with vast reserves, and is considered one of the promising alternatives to nonrenewable petroleum resources because it can be converted into valuable hydrocarbon feedstocks and hydrogen through appropriate reactions. Recently, the conversion of CH4 into other high-value-added products has received increasing attention because of their sustainability for energy and the environment. However, methane has a tetrahedral geometry with four equivalent C―H bonds due to the sp3 hybridization of the central carbon atom, with a C―H bond length of 0.1087 nm and an H-C―H bond angle of 109.5°. The absence of a dipole moment and the small polarizability (2.84 × 10−40 C2·m2·J−1) imply that methane requires a high local electric field for polarization and for nucleophilic or electrophilic attack. Nevertheless, it is believed that an effective method to activate CH4 would be available, so that not only methanol, formaldehyde, and ethylene but also other industrially valuable raw materials can be obtained. On the other hand, the conversion of this combustible gas into the corresponding liquid fossil fuel proceeds via secondary chemical conversion, and it can greatly reduce transportation costs. From the economic viewpoint, this can still provide considerable benefits. Homogeneous catalysts have been reported to catalyze methane, but most of them operate at high pressures (2–7 MPa), or in strongly acidic media and at high temperatures (up to 500 K). Heterogeneous catalysts reported in the literature are also active only at high temperatures. Therefore, finding an efficient method to active methane has become a hot research topic. Photocatalysis technology is recognized as the optimal solution for the conversion of CH4 since solar energy is by far the largest exploitable resource of energy. In the past years, much effort has been undertaken for the conversion of CH4 under light at low temperature. In this regard, several photocatalysts, including silica-alumina-titania, silica-supported oxides, and ceria- and zeolite-based materials, have been developed. In photocatalytic methane conversion, the C―H bond can be selectively activated by adjusting the wavelength and intensity of the incident light and the oxidation capacity of the photocatalysts, thereby avoiding the formation of byproducts. This review summarizes a series of photocatalytic direct methane conversion systems developed in recent years, including methane oxidation and coupling processes. The effects of the catalyst composition and structure, oxidant, and electron transfer on the activation of the C―H bond of methane are detailed. Finally, future perspectives and challenges for the photocatalytic conversion of methane are discussed.
  • 加载中
    1. [1]

      Xiao, G.; Guan, F.; Gang, L.; Hao, M.; Hong, F.; Liang, Y.; Chao, M.; Xing, W.; De, D.; Ming, W.; et al. Science 2014, 334, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    2. [2]

      Golisz, S. R.; Brent, G. T.; Goddard, W. A.; Groves, J. T.; Periana, R. A. Catal. Lett. 2010, 141, 213. doi: 10.1007/s10562-010-0499-5  doi: 10.1007/s10562-010-0499-5

    3. [3]

      Patrick, G.; Michel, P. Appl. Catal. B: Environ. 2002, 39, 1. doi: 10.1016/S0926-3373(02)00076-0  doi: 10.1016/S0926-3373(02)00076-0

    4. [4]

      Cullis, C. F.; Willatt, B. M. J. Cat. 1983, 83, 267. doi: 10.1016/0021-9517(83)90054-4  doi: 10.1016/0021-9517(83)90054-4

    5. [5]

      Andrey, J. Z.; Jackie, Y. Y. Nature 2000, 43, 6765. doi: 10.1038/47450  doi: 10.1038/47450

    6. [6]

      Tao, F. F.; Shan, J. J.; Nguyen, L.; Wang, Z.; Zhang, S.; Zhang, L.; Wu, Z.; Huang, W.; Zeng, S.; Hu, P. Nat. Commun. 2015, 6, 7798. doi: 10.1038/ncomms8798  doi: 10.1038/ncomms8798

    7. [7]

      Wang, H.; Chen, C.; Zhang, Y.; Peng, L.; Ma, S.; Yang, T.; Guo, H.; Zhang, Z.; Su, D. S.; Zhang, J. Nat. Commun. 2015, 6, 7181. doi: 10.1038/ncomms8181  doi: 10.1038/ncomms8181

    8. [8]

      Cargnello, M.; Delgado, J. J.; Hernandez, J. C. Bakhmutsky, K.; Montini, T.; Calvino, J. J.; Gorte, R. J.; Fornasiero, P. Science 2012, 337, 713. doi: 10.1126/science.1222887  doi: 10.1126/science.1222887

    9. [9]

      Narsimhan, K.; Iyoki, K.; Dinh, K.; Roman, L. Y. ACS Cent. Sci. 2016, 2, 424. doi: 10.1021/acscentsci.6b00139  doi: 10.1021/acscentsci.6b00139

    10. [10]

      Baek, J.; Rung, B.; Pei, X.; Park, M.; Fakra, S. C.; Liu, Y. S.; Matheu, R.; Alshmimri, S. A.; Alshehri, S; Trickett, C. A.; et al. J. Am. Chem. Soc. 2018, 140, 18208. doi: 10.1021/jacs.8b11525  doi: 10.1021/jacs.8b11525

    11. [11]

      Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z. Nat. Commun. 2016, 7, 12273. doi: 10.1038/ncomms12273  doi: 10.1038/ncomms12273

    12. [12]

      Shan, J.; Li, M.; Allard, L. F.; Lee, S.; Flytzani, S. M. Nature 2017, 551, 605. doi: 10.1038/nature24640  doi: 10.1038/nature24640

    13. [13]

      Sh, Q. W.; Xian, T.; Ju, C. H.; Wang, L.; Zhang, J. L. J. Am. Chem. Soc. 2019, 141, 6592. doi: 10.1021/jacs.8b13858  doi: 10.1021/jacs.8b13858

    14. [14]

      Ji, X.; Jin, R.; Li, A.; Bi, Y.; Ruan, Q.; Deng, Y.; Zhang, Y.; Yao, S.; Sankar, G.; Ma, D.; Tang, J. Nat. Catal. 2018, 1, 889. doi: 10.1038/s41929-018-0170-x  doi: 10.1038/s41929-018-0170-x

    15. [15]

      Hansan, L.; Chao, S.; Lei, Z.; Jiu, Z.; Hai, W.; Wilkinson, D. P. J. Power Sources 2006, 155, 95. doi: 10.1016/j.jpowsour.2006.01.030  doi: 10.1016/j.jpowsour.2006.01.030

    16. [16]

      Nishth, A.; Simon, J. F.; Rebecca, U. M.; Sultan, M. A.; Nikolaos, D.; Qian, H.; David, J. M.; Robert, L. J.; David, J. W.; Stuart, H. T.; et al. Science 2017, 358, 223. doi: 10.1126/science  doi: 10.1126/science

    17. [17]

      Newton, M. A.; Knorpp, A. J.; Pinar, A. B.; Sushkevich, V. L.; Palagin, D.; Bokhoven, J. A. J. Am. Chem. Soc. 2018, 140, 10090. doi: 10.1021/jacs.8b05139  doi: 10.1021/jacs.8b05139

    18. [18]

      Vanelderen, P.; Snyder, B. E.; Tsai, M. L.; Hadt, R. G.; Van, J.; Coussens, O.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. J. Am. Chem. Soc. 2015, 137, 6383. doi: 10.1021/jacs.5b02817  doi: 10.1021/jacs.5b02817

    19. [19]

      Snyder, B. E.; Vanelderen, P.; Bols, M. L.; Hallaert, S. D.; Bottger, L. H.; Ungur, L.; Pierloot, K.; Schoonheydt, R. A.; Sels, B. F.; Solomon, E. I. Nature 2016, 536, 317. doi: 10.1038/nature19059  doi: 10.1038/nature19059

    20. [20]

      Michael, M.; Thomas, S.; Wolf, A. H. Angew. Chem. Int. Ed. 2002, 41, 1475. doi: 10.1002/1521-3773  doi: 10.1002/1521-3773

    21. [21]

      Vitaly, L. S.; Dennis, P.; Marco, R.; Jeroen, A. B. Science 2017, 356, 523. doi: 10.1126/science.aam9035  doi: 10.1126/science.aam9035

    22. [22]

      Huang, W.; Zhang, S.; Tang, Y.; Li, Y.; Nguyen, L.; Li, Y.; Shan, J.; Xiao, D.; Gagne, R.; Anatoly, I. F.; et al. Angew. Chem. Int. Ed. 2016, 55, 13441. doi: 10.1002/anie.201604708  doi: 10.1002/anie.201604708

    23. [23]

      Zimmermann, T.; Soorholtz, M.; Bilke, M.; Schuth, F. J. Am. Chem. Soc. 2016, 138, 12395. doi: 10.1021/jacs.6b05167  doi: 10.1021/jacs.6b05167

    24. [24]

      Rahim, M. H.; Armstrong, R. D.; Hammond, C.; Dimitratos, N.; Freakley, S. J.; Forde, M. M.; Morgan, D. J.; Lalev, G.; Jenkins, R. L.; Lopez, J. A.; et al. Catal. Sci. Technol. 2016, 6, 3410. doi: 10.1039/c5cy01586c  doi: 10.1039/c5cy01586c

    25. [25]

      Liu, C.; Mou, C. Y.; Yu, S. F.; Chan, S. I. Energy Environ. Sci. 2016, 9, 1361. doi: 10.1039/c5ee03372a  doi: 10.1039/c5ee03372a

    26. [26]

      Grundner, S.; Markovits, M. A.; Li, G.; Tromp, M.; Pidko, E. A.; Hensen, E. J.; Jentys, A.; Sanchez, M.; Lercher, J. A. Nat. Commun. 2015, 6, 7546. doi: 10.1038/ncomms8546  doi: 10.1038/ncomms8546

    27. [27]

      Kaliaguine, S. L.; Shelomov. B. N.; Kazansky. V. B. J. Catal. 1978, 55, 384. doi: 10.1016/0021-9517(78)90225-7  doi: 10.1016/0021-9517(78)90225-7

    28. [28]

      Heactor, H. L.; Agustõan, M. Catal. Lett. 2002, 83, 37. doi: 10.1023/A:1020649313699  doi: 10.1023/A:1020649313699

    29. [29]

      Hu, Y.; Nagai, Y.; Rahmawaty, D.; Wei, C.; Anpo, M. Catal. Lett. 2008, 124, 80. doi: 10.1007/s10562-008-9491-8:  doi: 10.1007/s10562-008-9491-8:

    30. [30]

      Richard, P. N.; Charles, E. T.; Joseph, R. D. Catal. Today 1997, 33, 167. doi: 10.1016/S0920-5861(96)00155-1  doi: 10.1016/S0920-5861(96)00155-1

    31. [31]

      Villa, K.; Murcia, L. S.; Remon, M. J.; Andreu, T. Appl. Catal. B: Environ. 2016, 187, 30. doi: 10.1016/j.apcatb.2016.01.032  doi: 10.1016/j.apcatb.2016.01.032

    32. [32]

      Xuan, L.; Chen, G.; Liang, Y.; Zhen, J.; Jin, L. Adv. Funct. Mater. 2010, 20, 2815. doi: 10.1002/adfm.201000792  doi: 10.1002/adfm.201000792

    33. [33]

      Chen, Y.; Zeng, D.; Zhang, K.; Lu, A.; Wang, L.; Peng, D. L. Nanoscale 2014, 6, 874. doi: 10.1039/c3nr04558g  doi: 10.1039/c3nr04558g

    34. [34]

      Li, G.; Tang, Z. Nanoscale 2014, 6, 3995. doi: 10.1039/c3nr06787d  doi: 10.1039/c3nr06787d

    35. [35]

      Reza, G. M.; Dinh, C. T.; Beland, F.; Do, T. O. Nanoscale 2015, 7, 8187. doi: 10.1039/c4nr07224c  doi: 10.1039/c4nr07224c

    36. [36]

      Amiri, O.; Salavati, N. M.; Mir, N.; Beshkar, F.; Saadat, M.; Ansari, F. Renewable Energy 2018, 125, 590. doi: 10.1016/j.renene.2018.03.003  doi: 10.1016/j.renene.2018.03.003

    37. [37]

      Qing, Q.; Hong, Y.; Zheng, J.; Gong, L.; Ying, B. RSC Adv. 2014, 4, 59114. doi: 10.1039/c4ra09355k  doi: 10.1039/c4ra09355k

    38. [38]

      Na, T.; Zhi, Z.; Shi, S.; Yong, D.; Zhong, W. Science 2007, 316, 732. doi: 10.1126/science.1140484  doi: 10.1126/science.1140484

    39. [39]

      Hameed, A.; Ismail, I. M.; Aslam, M.; Gondal, M. A. Appl. Catal. A: Gen. 2014, 470, 327. doi: 10.1016/j.apcata.2013.10.045  doi: 10.1016/j.apcata.2013.10.045

    40. [40]

      Xiao, J. D.; Han, L.; Luo, J.; Yu, S. H.; Jiang, H. L. Angew. Chem. Int. Ed. 2018, 57, 1103. doi: 10.1002/anie.201711725  doi: 10.1002/anie.201711725

    41. [41]

      Wang, Y.; Suzuki, H.; Xie, J.; Tomita, O.; Martin, D. J.; Higashi, M.; Kong, D.; Abe, R.; Tang, J. Chem. Rev. 2018, 118, 5201. doi: 10.1021/acs.chemrev.7b00286  doi: 10.1021/acs.chemrev.7b00286

    42. [42]

      Guo, L.; Yang, Z.; Marcus, K.; Li, Z.; Luo, B.; Zhou, L.; Wang, X.; Du, Y.; Yang, Y. J. Am. Chem. Soc. 2018, 11, 106. doi: 10.1039/c7ee02464a:  doi: 10.1039/c7ee02464a:

    43. [43]

      Qian, C.; Long, C.; Juan, Q.; Ying, T.; Yi, L.; Chao, X.; Jin, N.; Wen, L. Chin. Chem. Lett. 2019, 06, 1214. doi: 10.1016/j.cclet.2019.03.002  doi: 10.1016/j.cclet.2019.03.002

    44. [44]

      Murcia, L. S.; Bacariza, M. C.; Villa, K.; Lopes, J. M.; Morante, J. R.; Andreu, T. ACS Catal. 2017, 7, 2878. doi: 10.1021/acscatal.6b03535  doi: 10.1021/acscatal.6b03535

    45. [45]

      Villa, K.; S, M. L.; Andreu, T.; Remon, M. J. Appl. Catal. B: Environ. 2015, 163, 150. doi: 10.1016/j.apcatb.2014.07.055  doi: 10.1016/j.apcatb.2014.07.055

    46. [46]

      Xu, Z. M.; Zheng, Ru.; Chen, Y.; Zhu, J.; Bian Z. F. Chin. J. Catal. 2019, 40, 631. doi: S1872-2067(19)63309-7

    47. [47]

      Shi, F.; Tse, M. K.; Pohl, M. M.; Bruckner, A.; Zhang, S.; Beller, M. Angew. Chem. Int. Ed. 2007, 46, 8866. doi: 10.1002/anie.200703418  doi: 10.1002/anie.200703418

    48. [48]

      Wang, T.; Yang, G.; Liu, J.; Yang, B.; Ding, S.; Yan, Z.; Xiao, T. Appl. Surf. Sci. 2014, 311, 314. doi: 10.1016/j.apsusc.2014.05.060  doi: 10.1016/j.apsusc.2014.05.060

    49. [49]

      Eunsung, K.; Scott, G. H. Environ. Sci. Technol. 2009, 43, 1493. doi: 10.1021/es802360f  doi: 10.1021/es802360f

    50. [50]

      Qian, X.; Ren, M.; Zhu, Y.; Yue, D.; Han, Y.; Jia, J.; Zhao, Y. Environ. Sci. Technol. 2017, 51, 3993. doi: 10.1021/acs.est.6b06429  doi: 10.1021/acs.est.6b06429

    51. [51]

      Hems, R. F.; Hsieh, J. S.; Slodki, M. A.; Zhou, S.; Abbatt, J. P. Environ. Sci. Technol. Lett. 2017, 4, 439. doi: 10.1021/acs.estlett.7b00381  doi: 10.1021/acs.estlett.7b00381

    52. [52]

      Jian, Z.; Jie, R.; Yuning, H.; Zhen, F. B.; He, L. J. Phys. Chem. C 2007, 111, 18965. doi: 10.1021/jp0751108  doi: 10.1021/jp0751108

    53. [53]

      Yue, Z.; Yang, S.; Ying, W.; Ji, B.; Mcpherson, G. L.; John, V. T. RSC Adv. 2017, 7, 39049. doi: 10.1039/c7ra06621j  doi: 10.1039/c7ra06621j

    54. [54]

      Isaac, B.; Maxime, S. Angew. Chem. Int. Ed. 2016, 55, 12873. doi: 10.1002/anie.201607216  doi: 10.1002/anie.201607216

    55. [55]

      Spannring, P.; Yazerski, V.; Bruijnincx, P. C. A.; Weckhuysen, B. M.; Klein, R. J. M. Chem. Eur. J. 2013, 19, 15012. doi: 10.1002/chem.201301371  doi: 10.1002/chem.201301371

    56. [56]

      Eric, M. F. Science 2012, 6105, 340. doi: 10.1126/science.1226840  doi: 10.1126/science.1226840

    57. [57]

      Vasant, R. C.; Anil, K. K.; Tushar, V. C. Science 1997, 275, 1286. doi: 10.1126/science.275.5304.1286  doi: 10.1126/science.275.5304.1286

    58. [58]

      Shimura, K.; Yoshida, H. Catal. Surv. Asia 2014, 18, 24. doi: 10.1007/s10563-014-9165-z  doi: 10.1007/s10563-014-9165-z

    59. [59]

      Yuliati, L.; Itoh, H.; Yoshida, H. Chem. Phy. Lett. 2008, 452, 178. doi: 10.1016/j.cplett.2007.12.051  doi: 10.1016/j.cplett.2007.12.051

    60. [60]

      Yuko, K.; Yoshida, H.; Tadashi, H. Chem. Commun. 1998, 21, 2389. doi: 10.1039/A806825I  doi: 10.1039/A806825I

    61. [61]

      Yuliati, L.; Tsubota, M.; Satsuma, A.; Itoh, H.; Yoshida H. J. Catal. 2006, 238, 214. doi: 10.1016/j.jcat.2005.12.002  doi: 10.1016/j.jcat.2005.12.002

    62. [62]

      Yoshida, H.; Matsushita, N.; Kato, Y.; Hattori, T. J. Phys. Chem. B 2003, 107, 8355. doi: 10.1021/jp034458  doi: 10.1021/jp034458

    63. [63]

      Yuko, K.; Hisao, Y.; Atsushi, S.; Tadashi, H. Microporous Mesoporous Mat. 2002, 51, 223. doi: 10.1016/s1387-1811(02)00268-8  doi: 10.1016/s1387-1811(02)00268-8

    64. [64]

      Li, L.; Li, G. D.; Yan, C.; Mu, X. Y.; Pan, X. L.; Zou, X. X.; Wang, K. X.; Chen, J. S. Angew. Chem. Int. Ed. 2011, 50, 8299. doi: 10.1002/anie.201102320  doi: 10.1002/anie.201102320

    65. [65]

      Li, L.; Cai, Y. Y.; Li, G. D.; Mu, X. Y.; Wang, K. X.; Chen, J. S. Angew. Chem. Int. Ed. 2012, 51, 4702. doi: 10.1002/anie.201200045  doi: 10.1002/anie.201200045

    66. [66]

      Wei, H.; Shou, F.; Qun, L.; Yong, H. Science 1997, 277, 1287. doi: 10.1126/science.277.5330.1287  doi: 10.1126/science.277.5330.1287

    67. [67]

      Schafer, S.; Wyrzgol, S. A.; Caterino, R.; Jentys, A.; Schoell, S. J.; Haver, M.; Knop, A.; Lercher, J. A.; Sharp, I. D.; Stut, M. J. Am. Chem. Soc. 2012, 134, 12528. doi: 10.1021/ja3020132  doi: 10.1021/ja3020132

    68. [68]

      Li, L.; Fan, S.; Mu, X.; Mi, Z.; Li, C. J. Am. Chem. Soc. 2014, 136, 7793. doi: 10.1021/ja5004119  doi: 10.1021/ja5004119

    69. [69]

      Yu, L.; Shao, Y.; Li, D. Appl. Catal. B: Environ. 2017, 204, 216. doi: 10.1016/j.apcatb.2016.11.039  doi: 10.1016/j.apcatb.2016.11.039

    70. [70]

      Chen, Y.; Zhao, H.; Liu, B.; Yang, H. Appl. Catal. B: Environ. 2015, 163, 189. doi: 10.1016/j.apcatb.2014.07.044  doi: 10.1016/j.apcatb.2014.07.044

    71. [71]

      Zhang, B.; Wang, Z.; Huang, B.; Zhang, X.; Qin, X.; Li, H.; Dai, Y.; Li, Y. Chem. Mater. 2016, 28, 6613. doi: 10.1021/acs.chemmater.6b02639  doi: 10.1021/acs.chemmater.6b02639

    72. [72]

      Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H.; Yuan, R.; Huang, X.; Wang, X.; Long, J. J. Am. Chem. Soc. 2018, 11, 294. doi: 10.1039/c7ee02951a  doi: 10.1039/c7ee02951a

    73. [73]

      Zhou, Y.; Zhang, L.; Wang, W. Nat. Commun. 2019, 10, 506. doi: 10.1038/s41467-019-08454-0  doi: 10.1038/s41467-019-08454-0

  • 加载中
    1. [1]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    2. [2]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    3. [3]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    6. [6]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    7. [7]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    8. [8]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    9. [9]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    10. [10]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    11. [11]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    12. [12]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    13. [13]

      Meihong Luo Hongyu Wang . Teaching Reform of Benzoin Oxidation Experiment in the Context of Green Pharmaceutical Chemistry. University Chemistry, 2025, 40(5): 376-382. doi: 10.12461/PKU.DXHX202411055

    14. [14]

      Fengying ZhangYanglin MeiYuman JiangShenshen ZhengKaibo ZhengYing Zhou . Research progress of transient absorption spectroscopy in solar energy conversion and utilization. Acta Physico-Chimica Sinica, 2025, 41(9): 100118-0. doi: 10.1016/j.actphy.2025.100118

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    17. [17]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    18. [18]

      Jiajia Wang Sibo Huang Xijing Gao Chaoxun Liu Haibo Zhang . 光催化硝酸根还原产氨的综合实验设计. University Chemistry, 2025, 40(8): 241-248. doi: 10.12461/PKU.DXHX202410050

    19. [19]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

Metrics
  • PDF Downloads(8)
  • Abstract views(830)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return