Citation: Chen Xing, Tian He, Zhang Ze. Periodic Misfit Dislocation and Electron Aggregation at (010) PbTiO3/SrTiO3 Heterointerface[J]. Acta Physico-Chimica Sinica, ;2020, 36(11): 190601. doi: 10.3866/PKU.WHXB201906019 shu

Periodic Misfit Dislocation and Electron Aggregation at (010) PbTiO3/SrTiO3 Heterointerface

  • Corresponding author: Tian He, hetian@zju.edu.cn
  • Received Date: 4 June 2019
    Revised Date: 27 June 2019
    Accepted Date: 28 June 2019
    Available Online: 5 July 2019

    Fund Project: the National Key Basic Research Development Program of China (973) 2015CB654900The project was supported by the National Key Basic Research Development Program of China (973) (2015CB654900)

  • It is important to determine the effects of misfit dislocations and other defects on the domain structure, ferroelectricity, conductivity, and other physical properties of ferroelectric thin films to understand their ferroelectric and piezoelectric behaviors. Much attention has been given to ferroelectric PbTiO3/SrTiO3 or PbZr0.2Ti0.8O3/SrTiO3 heterointerfaces, at which improper ferroelectricity, a spin-polarized two-dimensional electron gas, and other physical phenomena have been found. However, those heterointerfaces were all (001) planes, and there has been no experimental studies on the growth of (010) PbTiO3/SrTiO3 heterointerface due to the 6.4% misfit between two materials. In this study, we selected an atomically flat (010) PbTiO3/SrTiO3 heterointerface grown using a two-step hydrothermal method as the research subject, and this is the first experimental report on that interface. Interfacial dislocations can play a significant role in causing dramatic changes in the Curie temperature and polarization distribution near the dislocation cores, especially when the size of a ferroelectric thin film is scaled down to the nanoscale. The results of previous studies on the effects of interfacial dislocations on the physical properties of ferroelectric thin films have been contradictory. Thus, this issue needs to be explored more deeply in the future. This study used aberration corrected scanning transmission electron microscopy (STEM) to study the atomic structure of a (010) PbTiO3/SrTiO3 heterointerface and found periodic misfit dislocations with a Burgers vector of a[001]. The extra planes at the dislocation cores could relieve the misfit strain between the two materials in the [001] direction and thus allowed the growth of such an atomically sharp heterointerface. Moreover, monochromated electron energy-loss spectroscopy with an atomic scale spatial resolution and high energy resolution was used to explore the charge distribution near the periodic misfit dislocation cores. The fine structure of the Ti L edge was quantitatively analyzed by linearly fitting the experimental spectra recorded at various locations near and at the misfit dislocation cores with the Ti3+ and Ti4+ reference spectra. Therefore, the accurate valence change of Ti could be determined, which corresponded to the charge distribution. The probable existence of an aggregation of electrons was found near the a[001] dislocation cores, and the density of the electrons calculated from the valence change was 0.26 electrons per unit cell. Based on an analysis of the fine structure of the oxygen K edge, it could be argued that the electrons aggregating at the dislocation cores came from the oxygen vacancies in the interior regions of the PbTiO3. This aggregation of electrons will probably increase the electron conductivity along the dislocation line. The physics of two-dimensional charge distributions at oxide interfaces have been intensively studied, however, little attention had been given to the one-dimensional charge distribution. Therefore, the results of this study can stimulate research interest in exploring the influence of the interfacial dislocations on the physics of ferroelectric heterointerfaces.
  • 加载中
    1. [1]

      Ohtomo, A.; Muller, D.; Grazul, J.; Hwang, H. Y. Nature 2002, 419, 378. doi: 10.1038/nature00977  doi: 10.1038/nature00977

    2. [2]

      Ohtomo, A.; Hwang, H. Y. Nature 2004, 427, 423. doi: 10.1038/nature02308  doi: 10.1038/nature02308

    3. [3]

      Reyren, N.; Thiel, S.; Caviglia, A. D.; Kourkoutis, L. F.; Hammerl, G.; Richter, C.; Schneider, C. W.; Kopp, T.; Ruetschi, A. S.; Jaccard, D.; et al. Science 2007, 317, 1196. doi: 10.1126/science.1146006  doi: 10.1126/science.1146006

    4. [4]

      Brinkman, A.; Huijben, M.; Van Zalk, M.; Huijben, J.; Zeitler, U.; Maan, J. C.; Van der Wiel, W. G.; Rijnders, G.; Blank, D. H. A.; Hilgenkamp, H. Nat. Mater. 2007, 6, 493. doi: 10.1038/nmat1931  doi: 10.1038/nmat1931

    5. [5]

      Bousquet, E.; Dawber, M.; Stucki, N.; Lichtensteiger, C.; Hermet, P.; Gariglio, S.; Triscone, J. M.; Ghosez, P. Nature 2008, 452, 732. doi: 10.1038/nature06817  doi: 10.1038/nature06817

    6. [6]

      Zubko, P.; Stucki, N.; Lichtensteiger, C.; Triscone, J. M. Phys. Rev. Lett. 2010, 104, 187601. doi: 10.1103/PhysRevLett.104.187601  doi: 10.1103/PhysRevLett.104.187601

    7. [7]

      Zhang, Y.; Xie, L.; Kim, J.; Stern, A.; Wang, H.; Zhang, K.; Yan, X.; Li, L.; Liu, H.; Zhao, G.; et al. Nat. Commun. 2018, 9, 685. doi: 10.1038/s41467-018-02914-9  doi: 10.1038/s41467-018-02914-9

    8. [8]

      Zheng, Y.; Wang, B.; Woo, C. H. J. Mech. Phys. Solids 2007, 55, 1661. doi: 10.1016/j.jmps.2007.01.011  doi: 10.1016/j.jmps.2007.01.011

    9. [9]

      Zheng, Y.; Wang, B.; Woo, C. H. Appl. Phys. Lett. 2006, 88, 3. doi: 10.1063/1.2177365  doi: 10.1063/1.2177365

    10. [10]

      Alpay, S. P.; Misirlioglu, I. B.; Nagarajan, V.; Ramesh, R. Appl. Phys. Lett. 2004, 85, 2044. doi: 10.1063/1.1788894  doi: 10.1063/1.1788894

    11. [11]

      Jia, C. L.; Mi, S. B.; Urban, K.; Vrejoiu, I.; Alexe, M.; Hesse, D. Phys. Rev. Lett. 2009, 102, 4. doi: 10.1103/PhysRevLett.102.117601  doi: 10.1103/PhysRevLett.102.117601

    12. [12]

      Chu, M. W.; Szafraniak, I.; Scholz, R.; Harnagea, C.; Hesse, D.; Alexe, M.; Gösele, U. Nat. Mater. 2004, 3, 87. doi: 10.1038/nmat1057  doi: 10.1038/nmat1057

    13. [13]

      Wu, H. H.; Wang, J.; Cao, S. G.; Zhang, T. Y. Appl. Phys. Lett. 2013, 102, 232904. doi: 10.1063/1.4809945.  doi: 10.1063/1.4809945

    14. [14]

      Huang, W.; Wu, C. Y.; Zeng, Y. W.; Jin, C. H.; Zhang, Z. Acta Phys. -Chim. Sin. 2016, 32, 2287.  doi: 10.3866/PKU.WHXB201605164

    15. [15]

      Lu, D. H.; Zhu, D. C.; Jin, C. H. Acta Phys. -Chim. Sin. 2017, 33, 1514.  doi: 10.3866/PKU.WHXB201705123

    16. [16]

      Chang, C. P.; Chu, M. W.; Jeng, H. T.; Cheng, S. L.; Lin, J. G.; Yang, J. R.; Chen, C. H. Nat. Commun. 2014, 5, 8. doi: 10.1038/ncomms4522  doi: 10.1038/ncomms4522

    17. [17]

      Chao, C.; Ren, Z.; Zhu, Y.; Xiao, Z.; Liu, Z.; Xu, G.; Mai, J.; Li, X.; Shen, G.; Han, G. Angew. Chem. Int. Ed. 2012, 51, 9283. doi: 10.1002/anie.201204792  doi: 10.1002/anie.201204792

    18. [18]

      Ren, Z. H.; Wu, M. J.; Chen, X.; Li, W.; Li, M.; Wang, F.; Tian, H.; Chen, J. Z.; Xie, Y. W.; Mai, J. Q.; et al. Adv. Mater. 2018, 30, 1707017. doi: 10.1002/adma.201707017  doi: 10.1002/adma.201707017

    19. [19]

      Verbeeck, J.; Van Aert, S. Ultramicroscopy 2004, 101, 207. doi: 10.1016/j.ultramic.2004.06.004  doi: 10.1016/j.ultramic.2004.06.004

    20. [20]

      Verbeeck, J.; Van Aert, S.; Bertoni, G. Ultramicroscopy 2006, 106, 976. doi: 10.1016/j.ultramic.2006.05.006  doi: 10.1016/j.ultramic.2006.05.006

    21. [21]

      Verbeeck, J.; Bertoni, G. Microchim. Acta 2008, 161, 439. doi: 10.1007/s00604-008-0948-7  doi: 10.1007/s00604-008-0948-7

    22. [22]

      Leapman, R.; Grunes, L. Phys. Rev. Lett. 1980, 45, 397. doi: 10.1103/PhysRevLett.45.397  doi: 10.1103/PhysRevLett.45.397

    23. [23]

      Muller, D. A.; Nakagawa, N.; Ohtomo, A.; Grazul, J. L.; Hwang, H. Y. Nature 2004, 430, 657. doi: 10.1038/nature02756  doi: 10.1038/nature02756

    24. [24]

      Kalabukhov, A.; Gunnarsson, R.; Börjesson, J.; Olsson, E.; Claeson, T.; Winkler, D. Phys. Rev. B 2007, 75, 121404. doi: 10.1103/PhysRevB.75.121404  doi: 10.1103/PhysRevB.75.121404

    25. [25]

      Siemons, W.; Koster, G.; Yamamoto, H.; Harrison, W. A.; Lucovsky, G.; Geballe, T. H.; Blank, D. H.; Beasley, M. R. Phys. Rev. Lett. 2007, 98, 196802. doi: 10.1103/PhysRevLett.98.196802  doi: 10.1103/PhysRevLett.98.196802

    26. [26]

      Basletic, M.; Maurice, J. -L.; Carrétéro, C.; Herranz, G.; Copie, O.; Bibes, M.; Jacquet, É.; Bouzehouane, K.; Fusil, S.; Barthélémy, A. Nat. Mater. 2008, 7, 621. doi: 10.1038/nmat2223  doi: 10.1038/nmat2223

    27. [27]

      Ryu, J.; Han, G.; Song, T. K.; Welsh, A.; Trolier-McKinstry, S.; Choi, H.; Lee, J. P.; Kim, J. W.; Yoon, W. H.; Choi, J. J.; et al. ACS Appl. Mater. Inter. 2014, 6, 11980. doi: 10.1021/am5000307  doi: 10.1021/am5000307

    28. [28]

      Kiguchi, T.; Aoyagi, K.; Ehara, Y.; Funakubo, H.; Yamada, T.; Usami, N.; Konno, T. J. Sci. Technol. Adv. Mat. 2011, 12, 9. doi: 10.1088/1468-6996/12/3/034413  doi: 10.1088/1468-6996/12/3/034413

    29. [29]

      Su, D.; Meng, Q.; Vaz, C. A. F.; Han, M. G.; Segal, Y.; Walker, F. J.; Sawicki, M.; Broadbridge, C.; Ahn, C. H. Appl. Phys. Lett. 2011, 99, 102902. doi: 10.1063/1.3634028  doi: 10.1063/1.3634028

    30. [30]

      Kavokin, A. V.; Shelykh, I. A.; Malpuech, G. Phys. Rev. B 2005, 72, 4. doi: 10.1103/PhysRevB.72.233102  doi: 10.1103/PhysRevB.72.233102

    31. [31]

      Gao, P.; Ishikawa, R.; Feng, B.; Kumamoto, A.; Shibata, N.; Ikuhara, Y. Ultramicroscopy 2018, 184, 217. doi: 10.1016/j.ultramic.2017.09.006  doi: 10.1016/j.ultramic.2017.09.006

    32. [32]

      Szot, K.; Bihlmayer, G.; Speier, W. Nature of the Resistive Switching Phenomena in TiO2 and SrTiO3: Origin of the Reversible Insulator-Metal Transition. In Solid State Physics; Camley, R. E.; Stamps, R. L., Eds.; Elsevier Academic Press Inc.: San Diego, CA, USA, 2014; Vol. 65, pp. 353-559. doi: 10.1016/B978-0-12-800175-2.00004-2

    33. [33]

      Kemp, W. R. G.; Klemens, P. G.; Sreedhar, A. K.; White, G. K. Proc. Roy. Soc. London A-Mat. Phys. Sci. 1956, 233, 480. doi: 10.1098/rspa.1956.0005  doi: 10.1098/rspa.1956.0005

  • 加载中
    1. [1]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    2. [2]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    3. [3]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    4. [4]

      Qi WuChanghua WangYingying LiXintong Zhang . Enhanced photocatalytic synthesis of H2O2 by triplet electron transfer at g-C3N4@BN van der Waals heterojunction interface. Acta Physico-Chimica Sinica, 2025, 41(9): 100107-0. doi: 10.1016/j.actphy.2025.100107

    5. [5]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    6. [6]

      Peng LiYuanying CuiZhongliao WangGraham DawsonChunfeng ShaoKai Dai . Efficient interfacial charge transfer of CeO2/Bi19Br3S27 S-scheme heterojunction for boosted photocatalytic CO2 reduction. Acta Physico-Chimica Sinica, 2025, 41(6): 100065-0. doi: 10.1016/j.actphy.2025.100065

    7. [7]

      Chongjing LiuYujian XiaPengjun ZhangShiqiang WeiDengfeng CaoBeibei ShengYongheng ChuShuangming ChenLi SongXiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 2309036-0. doi: 10.3866/PKU.WHXB202309036

    8. [8]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    9. [9]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    10. [10]

      Jiaxing CaiWendi XuHaoqiang ChiQian LiuWa GaoLi ShiJingxiang LowZhigang ZouYong Zhou . Highly Efficient InOOH/ZnIn2S4 Hollow Sphere S-Scheme Heterojunction with 0D/2D Interface for Enhancing Photocatalytic CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-0. doi: 10.3866/PKU.WHXB202407002

    11. [11]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    16. [16]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    17. [17]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    18. [18]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    19. [19]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    20. [20]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

Metrics
  • PDF Downloads(13)
  • Abstract views(1540)
  • HTML views(456)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return