Citation: Zhang Ru, Yuan Linlin, Sun Kaiyue, Wang Shan, Geng Lina, Zhang Jianjun. Preparation and Partition Coefficient Determination of Nano-Resveratrol Liposomes[J]. Acta Physico-Chimica Sinica, ;2020, 36(6): 190509. doi: 10.3866/PKU.WHXB201905090 shu

Preparation and Partition Coefficient Determination of Nano-Resveratrol Liposomes

  • Corresponding author: Geng Lina, genglina0102@126.com
  • Received Date: 31 May 2019
    Revised Date: 21 June 2019
    Accepted Date: 21 June 2019
    Available Online: 27 June 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (31201305) and Natural Science Foundation of Hebei Province (B2019205054)the National Natural Science Foundation of China 31201305Natural Science Foundation of Hebei Province B2019205054

  • Resveratrol is a natural polyphenol and phytoalexin with anti-inflammatory, anti-oxidant, anti-cancer, and neuroprotective effects. However, resveratrol exhibits low solubility, light sensitivity, poor absorption by oral administration, and short cycle time, which greatly limit its applications in medicine and the food industry. To overcome these limitations, a nano-resveratrol liposome (RES-Lip) was prepared. As a drug carrier, liposomes have many advantages such as good targeting properties, low toxicity, biocompatibility, and long-term sustained release. In liposomal studies, the oil-water (n-octanol-water) partition coefficient (Po/w) is often used to predict the encapsulation and drug loading efficiencies. This method focuses on the lipophilicity of the drug, reflecting its hydrophobic action while ignoring the biological properties of the biofilm. The liposome-water partition coefficient (Plip/w) reflects the structure of the biofilms and its interaction with drugs governed by factors including hydrophobicity, electrostatic forces, and hydrogen bonding. Herein, RES-Lip was successfully prepared using a rotary-evaporated film-ultrasonication method and subsequent characterization by transmission electron microscopy (TEM) and dynamic light scattering (DLS). The effects of the membrane to material ratio (lecithin to cholesterol mass ratio mPC : mChol = 5 : 1, 8 : 1, 10 : 1, and 12 : 1) and drug to lipid ratio (drug to lecithin mass ratio mRES : mPC = 1 : 25, 1 : 40, 1 : 50, and 1 : 60) of nano-resveratrol liposomes on the liposome-water partition coefficient (Plip/w) were determined. Changes in the oil-water partition coefficient (lgPo/w) and liposome-water partition coefficient (lgPlip/w) as a function of pH were also determined. In addition, the Gibbs free energy between the drug and phospholipid bilayer membrane in RES-Lip was calculated. The results showed that RES-Lip adopted a spherical vesicle structure with a particle size of approximately 100 nm. When the membrane to material ratio was 10 : 1 and the drug to lipid ratio was 1 : 40, lgPlip/w was maximized, indicating that the combined forces between RES and the phospholipid membrane were the highest at these ratios. The trends of lgPo/w and lgPlip/w as a function of pH were the same, indicating that the main interaction force between RES and the phospholipid membrane was the hydrophobic effect with secondary interaction forces of hydrogen bonding and electrostatic interaction. The Gibbs free energy between the RES and liposome membrane in RES-Lip was determined to be −17.07 kJ·mol−1.
  • 加载中
    1. [1]

      Arora, D.; Jaglan, S. Environ. Chem. Lett. 2018, 16 (1), 35. doi: 10.1007/s10311-017-0660-0  doi: 10.1007/s10311-017-0660-0

    2. [2]

      Yucel, C.; Karatoprak, G. S.; Aktas, Y. J. Nanosci. Nanotechnol. 2018, 18 (6), 3856. doi: 10.1166/jnn.2018.15247  doi: 10.1166/jnn.2018.15247

    3. [3]

      Elshaer, M.; Chen, Y. R.; Wang, X. J.; Tang, X. W. Life Sci. 2018, 207, 340. doi: 10.1016/j.lfs.2018.06.028  doi: 10.1016/j.lfs.2018.06.028

    4. [4]

      Jang, M.; Cai, L.; Udeani, G. O.; Slowing, K. V.; Thomas, C. F.; Beecher, C. W.; Fong, H. H.; Farnsworth, N. R.; Kinghorn, A. D.; Mehta, R. G.; et al. Science 1997, 275 (5297), 218. doi: 10.1126/science.275.5297.218  doi: 10.1126/science.275.5297.218

    5. [5]

      Huang, X. T.; Li, X.; Xie, M. L.; Huang, Z.; Huang, Y. X.; Wu, G. X.; Peng, Z. R.; Sun, Y. N.; Ming, Q. L.; Liu, Y. X.; et al. Chem.-Biol. Interact. 2019, 306, 29. doi: 10.1016/j.cbi.2019.04.001  doi: 10.1016/j.cbi.2019.04.001

    6. [6]

      Wang, M. L.; Li, L.; Zhang, X. W.; Liu, Y. P.; Zhu, R. Y.; Liu, L. X.; Fang, Y.; Gao, Z. R.; Gao, D. W. ACS Sustain. Chem. Eng. 2018, 6 (12), 17124. doi: 10.1021/acssuschemeng.8b04507  doi: 10.1021/acssuschemeng.8b04507

    7. [7]

      Hammoud, Z.; Gharib, R.; Fourmentin, S.; Elaissari, A.; Greige-Gerges, H. Int. J. Pharm. 2019, 561, 161. doi: 10.1016/j.ijpharm.2019.02.022  doi: 10.1016/j.ijpharm.2019.02.022

    8. [8]

      Van Tran, V.; Moon, J. Y.; Lee, Y. C. J. Control. Release 2019, 300, 114. doi: 10.1016/j.jconrel.2019.03.003  doi: 10.1016/j.jconrel.2019.03.003

    9. [9]

      Wehbe, N.; Patra, D.; Abdel-Massih, R. M.; Baydoun, E. Colloid Surf. B-Biointerfaces 2019, 173, 94. doi: 10.1016/j.colsurfb.2018.09.053  doi: 10.1016/j.colsurfb.2018.09.053

    10. [10]

      Kristl, J.; Teskac, K.; Caddeo, C.; Abramovic, Z.; Sentjurc, M. Eur. J. Pharm. Biopharm. 2009, 73 (2), 253. doi: 10.1016/j.ejpb.2009.06.006  doi: 10.1016/j.ejpb.2009.06.006

    11. [11]

      Ethemoglu, M. S.; Seker, F. B.; Akkaya, H.; Kilic, E.; Aslan, I.; Erdogan, C. S.; Yilmaz, B. Neuroscience 2017, 357, 12. doi: 10.1016/j.neuroscience.2017.05.026  doi: 10.1016/j.neuroscience.2017.05.026

    12. [12]

      Wang, H. Y.; Zhang, M. J.; Yang, Q. Cereals & Oils 2018, 31 (3), 93.  doi: 10.3969/j.issn.1008-9578.2018.03.025

    13. [13]

      Wang, Y. C.; Xu, H. L.; Fu, Q.; Ma, R.; Xiang, J. Z. China J. Chin. Mater. Med. 2011, 36 (8), 1060.  doi: 10.4268/cjcmm20110826

    14. [14]

      Wei, G.; Xv, H.; Ma, Y.; Li, S. M.; Zheng, J. M. Acta Pharm. Sin. 2001, No. 9, 707.  doi: 10.3321/j.issn:0513-4870.2001.09.018

    15. [15]

      Deng, Y. J.; Shi, S. F.; Gu, X. X. Acta Pharm. Sin. 1988, No. 7, 539.

    16. [16]

      Ma, H. Q.; Mu, J.; Liu, Y.; Zhang, H.; Ding, T.; Tian, H.; Wang, C. L.; Li, Y.; Liu, F. Northwest Pharm. J. 2019, 34 (1), 84.  doi: 10.3969/j.issn.1004-2407.2019.01.021

    17. [17]

      Mohsen-Nia, M.; Ebrahimabadi, A. H.; Niknahad, B. J. Chem. Thermodyn. 2012, 54, 393. doi: 10.1016/j.jct.2012.05.021  doi: 10.1016/j.jct.2012.05.021

    18. [18]

      Barzanti, C.; Evans, R.; Fouquet, J.; Gouzin, L.; Howarth, N. M.; Kean, G.; Levet, E.; Wang, D.; Wayemberg, E.; Yeboah, A. A.; et al. Tetrahedron Lett. 2007, 48 (19), 3337. doi: 10.1016/j.tetlet.2007.03.085  doi: 10.1016/j.tetlet.2007.03.085

    19. [19]

      van Balen, G. P.; Martinet, C. A. M.; Caron, G.; Bouchard, G.; Reist, M.; Carrupt, P. A.; Fruttero, R.; Gasco, A.; Testa, B. Med. Res. Rev. 2004, 24 (3), 299. doi: 10.1002/med.10063  doi: 10.1002/med.10063

    20. [20]

      Endo, S.; Mewburn, B.; Escher, B. I. Chemosphere 2013, 90 (2), 505. doi: 10.1016/j.chemosphere.2012.07.069  doi: 10.1016/j.chemosphere.2012.07.069

    21. [21]

      Chavez-Capilla, T.; Maher, W.; Kelly, T.; Foster, S. J. Environ. Sci. 2016, 49, 222. doi: 10.1016/j.jes.2016.08.007  doi: 10.1016/j.jes.2016.08.007

    22. [22]

      Esteves, F.; Moutinho, C.; Matos, C. J. Liposome Res. 2013, 23 (2), 83. doi: 10.3109/08982104.2012.742539  doi: 10.3109/08982104.2012.742539

    23. [23]

      Ikonen, M.; Murtomaki, L.; Kontturi, K. J. Electroanal. Chem. 2007, 602 (2), 189. doi: 10.1016/j.jelechem.2006.12.014  doi: 10.1016/j.jelechem.2006.12.014

    24. [24]

      Lu, W. G.; Chen, T. T.; Wang, P. Q.; Li, J.; Ren, D. Q. Chin. J. Pharmaceut. 2008, No. 8, 591.  doi: 10.3969/j.issn.1001-8255.2008.08.012

    25. [25]

      Zhong, H. J.; Deng, Y. J.; Wang, L. J.; Du, S. Wang, X. M.; Chen, Y. J. Shenyang Pharm. Univ. 2005, No. 2, 110.

    26. [26]

      Li, N. N.; Geng, L. N.; Wang, L.; Yuan, L. L.; Chang, Y. Z.; Zhang, J. J. Acta Phys. -Chim. Sin. 2015, 31 (11), 2043.  doi: 10.3866/PKU.WHXB201509141

    27. [27]

      Huang, C.; Mason, J. T. Proc. Natl. Acad. Sci. U. S. A. 1978, 75 (1), 308. doi: 10.1073/pnas.75.1.308  doi: 10.1073/pnas.75.1.308

    28. [28]

      Russell, C. J.; Thorgeirsson, T. E.; Shin, Y. K. Biochemistry 1996, 35 (29), 9526. doi: 10.1021/bi960614+  doi: 10.1021/bi960614+

    29. [29]

      Li, X.; Lv, H. F.; Ying, M. F.; Zhao, Y. Z.; Xu, Y. Y.; Zhao, R. Chin. J. Mod. Appl. Pharm. 2017, 34 (1), 72.  doi: 10.13748/j.cnki.issn1007-7693.2017.01.017

    30. [30]

      Suo, X. B.; Li, M. L.; Wang, Y. Q.; Qiu, J. S. Chin. Pharm. J. 2009, 44 (23), 1796.

    31. [31]

      Wang, Z. X.; Deng, Y. J.; Zhang, X. P. Acta Pharm. Sin. 2006, 41 (4), 318.  doi: 10.3321/j.issn:0513-4870.2006.04.005

    32. [32]

      Quan, D. Q.; Ge, M.; Gao, L. J. Chin. Pharm. J. 2012, 47 (12), 1001.

  • 加载中
    1. [1]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    2. [2]

      Honglian Liang Xiaozhe Kuang Fuping Wang Yu Chen . Exploration and Practice of Integrating Ideological and Political Education into Physical Chemistry: a Case on Surface Tension and Gibbs Free Energy. University Chemistry, 2024, 39(10): 433-440. doi: 10.12461/PKU.DXHX202405073

    3. [3]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    4. [4]

      Yinjie XuSuiqin LiLihao LiuJiahui HeKai LiMengxin WangShuying ZhaoChun LiZhengbin ZhangXing ZhongJianguo Wang . Enhanced Electrocatalytic Oxidation of Sterols using the Synergistic Effect of NiFe-MOF and Aminoxyl Radicals. Acta Physico-Chimica Sinica, 2024, 40(3): 2305012-0. doi: 10.3866/PKU.WHXB202305012

    5. [5]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    6. [6]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    7. [7]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    8. [8]

      Supin Zhao Jing Xie . Understanding the Vibrational Stark Effect of Water Molecules Using Quantum Chemistry Calculations. University Chemistry, 2025, 40(3): 178-185. doi: 10.12461/PKU.DXHX202406024

    9. [9]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    10. [10]

      Huasen LuShixu SongQisen JiaGuangbo LiuLuhua Jiang . Advances in Cu2O-based Photocathodes for Photoelectrochemical Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(2): 2304035-0. doi: 10.3866/PKU.WHXB202304035

    11. [11]

      Jia Zhou . Constructing Potential Energy Surface of Water Molecule by Quantum Chemistry and Machine Learning: Introduction to a Comprehensive Computational Chemistry Experiment. University Chemistry, 2024, 39(3): 351-358. doi: 10.3866/PKU.DXHX202309060

    12. [12]

      Zhao LuHu LvQinzhuang LiuZhongliao Wang . Modulating NH2 Lewis Basicity in CTF-NH2 through Donor-Acceptor Groups for Optimizing Photocatalytic Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(12): 2405005-0. doi: 10.3866/PKU.WHXB202405005

    13. [13]

      Yiling Wu Peiyao Jin Shenyue Tian Ji Zhang . The Star of Sugar Substitutes: An Interview of Erythritol. University Chemistry, 2024, 39(9): 22-27. doi: 10.12461/PKU.DXHX202404034

    14. [14]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    15. [15]

      Aili Feng Xin Lu Peng Liu Dongju Zhang . Computational Chemistry Study of Acid-Catalyzed Esterification Reactions between Carboxylic Acids and Alcohols. University Chemistry, 2025, 40(3): 92-99. doi: 10.12461/PKU.DXHX202405072

    16. [16]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    17. [17]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    18. [18]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

Metrics
  • PDF Downloads(14)
  • Abstract views(1301)
  • HTML views(284)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return