Citation: Ge Yang, Mu Xulin, Lu Yue, Sui Manling. Photoinduced Degradation of Lead Halide Perovskite Thin Films in Air[J]. Acta Physico-Chimica Sinica, ;2020, 36(8): 190503. doi: 10.3866/PKU.WHXB201905039 shu

Photoinduced Degradation of Lead Halide Perovskite Thin Films in Air

  • Corresponding author: Lu Yue, luyuerr@163.com Sui Manling, mlsui@bjut.edu.cn
  • Received Date: 8 May 2019
    Revised Date: 5 June 2019
    Accepted Date: 6 June 2019
    Available Online: 14 June 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2016YFB0700700), the National Natural Science Fund for Innovative Research Groups, China (51621003), the National Natural Science Foundation of China (11704015), the Scientific Research Key Program of Beijing Municipal Commission of Education, China (KZ201310005002), and Beijing Municipal Found for Scientific Innovation, China (PXM2019_014204_500031)Beijing Municipal Found for Scientific Innovation, China PXM2019_014204_500031the National Natural Science Fund for Innovative Research Groups, China 51621003the National Key Research and Development Program of China 2016YFB0700700the National Natural Science Foundation of China 11704015the Scientific Research Key Program of Beijing Municipal Commission of Education, China KZ201310005002

  • As an excellent photoelectric material, metal halide perovskites have been rapidly developed in the photovoltaic field. The power conversion efficiency of solar cells based on perovskite materials now exceeds 24%, which is close to the conversion efficiency of silicon-based solar cells. However, organic-inorganic hybrid perovskite materials are sensitive to light, oxygen, and moisture, particularly when combined in the ambient environment, limiting their commercial application in perovskite devices due to their poor environmental stability. Therefore, a comprehensive understanding of the degradation mechanism is the key for development of an effective method to inhibit the degradation of perovskite materials. Herein, the photo-induced degradation process of CH3NH3PbI3 films in air was studied by conventional optical and structural characterization methods, including ultraviolet-visible (UV-Vis) absorption spectroscopy, X-ray diffraction (XRD) and advanced transmission electron microscopy (TEM) equipped with a probe spherical aberration corrector. The CH3NH3PbI3 films were first decomposed into hexagonal PbI2 and amorphous phase, and subsequently oxidized to the amorphous phase under the combined effects of light and oxygen. The molecular formula of the amorphous phase was further confirmed as PbI2−2xOx (0.4 < x < 0.6) via X-ray energy dispersive spectroscopy (EDS) and electron energy loss spectroscopy (EELS). Further analysis showed that the film degradation is mainly related to superoxide (O2•−) formed by combination of oxygen molecules and photoelectrons in the perovskite film. The organic part of the CH3NH3PbI3 is oxidized by O2•− and CH3NH3PbI3 is decomposed to form volatile products, such as CH3NH2 and I2, then degraded into PbI2, and oxidized to form the amorphous PbI2−2xOx. Therefore, during the initial degradation of film under light soaking in air, the degradation sites are mainly located at the interface between CH3NH3PbI3 and air. Many pores were observed on the film surface due to the large loss of volatile decomposition products during the initial degradation. The films then converted to a honeycomb hollow morphology due to the continuous consumption of material under light soaking, reducing the mass of the film as well. Finally, the entire film was oxidized to form an amorphous structure. Herein, for the first time, we report that the formation of amorphous oxides is accompanied by the degradation of perovskite film. This study presents a new understanding of the photo-induced degradation mechanism of perovskite films in air and provides novel theoretical guidance to promote the long-term stability of perovskite solar cells.
  • 加载中
    1. [1]

      De Wolf, S.; Holovsky, J.; Moon, S. J.; Loper, P.; Niesen, B.; Ledinsky, M.; Haug, F. J.; Yum, J. H.; Ballif, C. J. Phys. Chem. Lett. 2014, 5, 1035. doi: 10.1021/jz500279b  doi: 10.1021/jz500279b

    2. [2]

      Stranks, S. D.; Eperon, G. E.; Grancini, G.; Menelaou, C.; Alcocer, M. J.; Leijtens, T.; Herz, L. M.; Petrozza, A.; Snaith, H. J. Science 2013, 342, 341. doi: 10.1126/science.1243982  doi: 10.1126/science.1243982

    3. [3]

      Wehrenfennig, C.; Eperon, G. E.; Johnston, M. B.; Snaith, H. J.; Herz, L. M. Adv. Mater. 2014, 26, 1584. doi: 10.1002/adma.201305172  doi: 10.1002/adma.201305172

    4. [4]

      Steirer, K. X.; Schulz, P.; Teeter, G.; Stevanovic, V.; Yang, M.; Zhu, K.; Berry, J. J. ACS Energy Lett. 2016, 1, 360. doi: 10.1021/acsenergylett.6b00196  doi: 10.1021/acsenergylett.6b00196

    5. [5]

      Jeon, N. J.; Noh, J. H.; Kim, Y. C.; Yang, W. S.; Ryu, S.; Seok, S. I. Nat. Mater. 2014, 13, 897. doi: 10.1038/nmat4014  doi: 10.1038/nmat4014

    6. [6]

      Kojima, A.; Teshima, K.; Shirai, Y.; Miyasaka, T. J. Am. Chem. Soc. 2009, 131, 6050. doi: 10.1021/ja809598r  doi: 10.1021/ja809598r

    7. [7]

      https://www.nrel.gov/pv/assets/pdfs/best-reserch-cell-efficiencies (accessed May 1, 2019).

    8. [8]

      Tang, X. F.; Brandl, M.; May, B.; Levchuk, I.; Hou, Y.; Richter, M.; Chen, H. W.; Chen, S.; Kahmann, S.; Osvet, A.; et al. J. Mater. Chem. A 2016, 4, 15896. doi: 10.1039/c6ta06497c  doi: 10.1039/c6ta06497c

    9. [9]

      Yang, J. L.; Siempelkamp, B. D.; Liu, D. Y.; Kelly, T. L. ACS Nano 2015, 9, 1955. doi: 10.1021/nn506864k  doi: 10.1021/nn506864k

    10. [10]

      Aristidou, N.; Sanchez-Molina, I.; Chotchuangchutchaval, T.; Brown, M.; Martinez, L.; Rath, T.; Haque, S. A. Angew. Chem. Int. Ed. 2015, 54, 8208. doi: 10.1002/anie.201503153  doi: 10.1002/anie.201503153

    11. [11]

      Nie, W.; Tsai, H.; Asadpour, R.; Blancon, J. C.; Neukirch, A. J.; Gupta, G.; Crochet, J. J.; Chhowalla, M.; Tretiak, S.; Alam, M. A.; et al. Science 2015, 347, 522. doi: 10.1126/science.aaa0472  doi: 10.1126/science.aaa0472

    12. [12]

      Zhou, Y.; Yang, M.; Vasiliev, A. L.; Garces, H. F.; Zhao, Y.; Wang, D.; Pang, S.; Zhu, K.; Padture, N. P. J. Mater. Chem. A 2015, 3, 9249. doi: 10.1039/c4ta07036d  doi: 10.1039/c4ta07036d

    13. [13]

      Chen, H. Adv. Funct. Mater. 2017, 27, 1605654. doi: 10.1002/adfm.201605654  doi: 10.1002/adfm.201605654

    14. [14]

      Shai, X. X.; Li, D.; Liu, S. S.; Li, H.; Wang, M. K. Acta Phys. -Chim. Sin. 2016, 32, 2159.  doi: 10.3866/PKU.WHXB201606072

    15. [15]

      Rong, Y.; Hu, Y.; Mei, A.; Tan, H.; Saidaminov, M. I.; Seok, S. I.; McGehee, M. D.; Sargent, E. H.; Han, H. Science 2018, 361, eaat8235. doi: 10.1126/science.aat8235  doi: 10.1126/science.aat8235

    16. [16]

      Huang, Y; Sun, Q. D.; Xu, W.; He, Y.; Yin, W. J. Acta Phys. -Chim. Sin. 2017, 33, 1730.  doi: 10.3866/PKU.WHXB201705042

    17. [17]

      Boyd, C. C.; Cheacharoen, R.; Leijtens, T.; McGehee, M. D. Chem. Rev. 2018, 119, 3418. doi: 10.1021/acs.chemrev.8b00336  doi: 10.1021/acs.chemrev.8b00336

    18. [18]

      Sun, Q.; Fassl, P.; Becker-Koch, D.; Bausch, A.; Rivkin, B.; Bai, S.; Hopkinson, P. E.; Snaith, H. J.; Vaynzof, Y. Adv. Energy Mater. 2017, 7, 1700977. doi:10.1002/aenm.201700977  doi: 10.1002/aenm.201700977

    19. [19]

      Bryant, D.; Aristidou, N.; Pont, S.; Sanchez-Molina, I.; Chotchunangatchaval, T.; Wheeler, S.; Durrant, J. R.; Haque, S. A. Energy Environ. Sci. 2016, 9, 1655. doi: 10.1039/c6ee00409a  doi: 10.1039/c6ee00409a

    20. [20]

      Aristidou, N.; Eames, C.; Sanchez-Molina, I.; Bu, X.; Kosco, J.; Islam, M. S.; Haque, S. A. Nat. Commun. 2017, 8, 15218. doi: 10.1038/ncomms15218  doi: 10.1038/ncomms15218

    21. [21]

      Lee, M. M.; Teuscher, J.; Miyasaka, T.; Murakami, T. N.; Snaith, H. J. Science 2012, 338, 643. doi: 10.1126/science.1228604  doi: 10.1126/science.1228604

    22. [22]

      Wu, Y.; Islam, A.; Yang, X.; Qin, C.; Liu, J.; Zhang, K.; Peng, W.; Han, L. Energy Environ. Sci. 2014, 7, 2934. doi: 10.1039/c4ee01624f  doi: 10.1039/c4ee01624f

    23. [23]

      Ouyang, Y.; Shi, L.; Li, Q.; Wang, J. Small Methods 2019, 1900154. doi: 10.1002/smtd.201900154  doi: 10.1002/smtd.201900154

    24. [24]

      Li, Y.; Zhao, Z.; Lin, F.; Cao, X.; Cui, X.; Wei, J. Small 2017, 13, 1604125. doi:10.1002/smll.201604125  doi: 10.1002/smll.201604125

    25. [25]

      Rothmann, M. U.; Li, W.; Zhu, Y.; Liu, A.; Ku, Z. L.; Bach, U.; Etheridge, J.; Cheng, Y. B. Adv. Mater. 2018, 30, 1802769. doi: 10.1002/adma.201802769  doi: 10.1002/adma.201802769

    26. [26]

      Pennycook, S. J.; Nellist, P. D. Z-Contrast Scanning Transmission Electron Microscopy. In Impact of Electron and Scanning Probe Microscopy on Materials Research; Rickerby, D. G., Valdrè, G., Valdrè, U., Eds.; Springer Netherlands: Dordrecht, The Netherlangds, 1999; pp. 161–207.

    27. [27]

      Jung, H. J.; Kim, D.; Kim, S.; Park, J.; Dravid, V. P.; Shin, B. Adv. Mater. 2018, 30, e1802769. doi: 10.1002/adma.201802769  doi: 10.1002/adma.201802769

  • 加载中
    1. [1]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    2. [2]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    3. [3]

      Xinyuan Shi Chenyangjiang Changyu Zhai Xuemei Lu Jia Li Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019

    4. [4]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    5. [5]

      Qilin YUYifei XUPengjun ZHANGShuwei HAOChongqiang ZHUChunhui YANG . Effect of regulating K+/Na+ ratio on the structure and optical properties of double perovskite Cs2NaBiCl6: Mn2+. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1058-1067. doi: 10.11862/CJIC.20240418

    6. [6]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    7. [7]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    8. [8]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    9. [9]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    10. [10]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    11. [11]

      Yao MaXin ZhaoHongxu ChenWei WeiLiang Shen . Progress and Perspective of Perovskite Thin Single Crystal Photodetectors. Acta Physico-Chimica Sinica, 2025, 41(4): 2309045-0. doi: 10.3866/PKU.WHXB202309045

    12. [12]

      Rui LiHuan LiuYinan JiaoShengjian QinJie MengJiayu SongRongrong YanHang SuHengbin ChenZixuan ShangJinjin Zhao . Emerging Irreversible and Reversible Ion Migrations in Perovskites. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-0. doi: 10.3866/PKU.WHXB202311011

    13. [13]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    14. [14]

      Lin Song Dourong Wang Biao Zhang . Innovative Experimental Design and Research on Preparing Flexible Perovskite Fluorescent Gels Using 3D Printing. University Chemistry, 2024, 39(7): 337-344. doi: 10.3866/PKU.DXHX202310107

    15. [15]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    16. [16]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    17. [17]

      Fan JIAWenbao XUFangbin LIUHaihua ZHANGHongbing FU . Synthesis and electroluminescence properties of Mn2+ doped quasi-two-dimensional perovskites (PEA)2PbyMn1-yBr4. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1114-1122. doi: 10.11862/CJIC.20230473

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

Metrics
  • PDF Downloads(20)
  • Abstract views(1897)
  • HTML views(506)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return