Citation: ZHANG Chufeng, CHEN Zhewei, LIAN Yuebin, CHEN Yujie, LI Qin, GU Yindong, LU Yongtao, DENG Zhao, PENG Yang. Copper-based Conductive Metal Organic Framework In-situ Grown on Copper Foam as a Bifunctional Electrocatalyst[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1404-1411. doi: 10.3866/PKU.WHXB201905030 shu

Copper-based Conductive Metal Organic Framework In-situ Grown on Copper Foam as a Bifunctional Electrocatalyst

  • Corresponding author: PENG Yang, ypeng@suda.edu.cn
  • Received Date: 6 May 2019
    Revised Date: 4 June 2019
    Accepted Date: 4 June 2019
    Available Online: 10 December 2019

    Fund Project: the Postdoctoral Science Foundation of China 2018T110544The project was supported by the National Natural Science Foundation of China 21805201The project was supported by the National Natural Science Foundation of China 21701118the Natural Science Foundation of Jiangsu Province, China BK20160323the Natural Science Foundation of Jiangsu Province, China BK20161209The project was supported by the National Natural Science Foundation of China (21701118, 21805201), the Natural Science Foundation of Jiangsu Province, China (BK20161209, BK20160323, BK20170341), the Postdoctoral Science Foundation of China (2017M611899, 2018T110544) and the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau, China (SYG201748)the Natural Science Foundation of Jiangsu Province, China BK20170341the Key Technology Initiative of Suzhou Municipal Science and Technology Bureau, China SYG201748the Postdoctoral Science Foundation of China 2017M611899

  • With the increasing energy demands for electronic equipment, numerous studies have been conducted to achieve higher energy conversion and develop storage devices such as metal-air batteries, water splitting devices, and fuel cells. All these devices are related to the oxygen evolution reaction (OER) and/or oxygen reduction reaction (ORR). Currently, platinum group metals (PGMs) or their oxides are the most active electrocatalysts for OER and ORR. However, the high cost and scarcity of these noble metals hinder their widespread application. Therefore, the development of a low-cost electrocatalyst that exhibits catalytic performance comparable to or better than that of PGMs is essential.Metal-organic frameworks (MOFs) are a new class of porous materials constructed from metal ions and organic linkers. MOF materials have diverse metal centers. In addition, organic ligands containing various heteroatoms can change the microenvironment of these metal centers. Moreover, the size, morphology, and porosity of MOF materials can be precisely tuned. These advantages of MOF are beneficial for electrocatalytic reactions. However, MOF is generally considered to be a poor electrocatalyst and is rarely used in the field of electrocatalysis because of its low electrical conductivity. To increase the electrical conductivity of MOF, high-temperature calcination or hybridization with conductive supports is necessary. However, high-temperature calcination may sacrifice the intrinsic molecular metal active sites of MOFs, whereas hybridization with conductive supports may block their inherent micropores. The development of MOF materials with high electrical conductivity is vital for electrocatalysis.Herein, we report a two-dimensional conductive MOF based on copper foam growth (Cu3HITP2/CF, where HITP = 2, 3, 6, 7, 10, 11-hexaaminotriphenylene hexahydrochloride, CF = copper foam), which has high electrical conductivity and excellent catalytic stability and can be used as a bi-functional electrocatalyst in OER and ORR. In addition, this catalyst does not require heat treatment or the addition of a conductive agent. We first electroplated needle-shaped Cu(OH)2 nanowires onto the surface of a blank copper foam, and then immersed it in a solution of HITP to convert it into Cu3HITP2 at 65 ℃. To confirm its physicochemical properties, the as-synthesized Cu3HITP2/CF was characterized and analyzed by X-ray diffraction, infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy. The morphology was characterized by scanning and transmission electron microscopy. The as-synthesized Cu3HITP2/CF maintained a two-dimensional needle-like morphology during the reaction and could be stably operated in an alkaline solution. The overpotential at 10 mA·cm-2 in the OER was only 1.53 V, and the current density did not decrease significantly after 24 h. The Faraday efficiency was as high as 96.84%, and only 1.57% of the by-product H2O2 was produced. In addition, during the ORR, the half-wave potential of Cu3HITP2/CF reached 0.75 V and its activity did not decrease significantly after 2000 cycles of voltammetric scanning. Moreover, its electron transfer number was 3.85, with 5.7% H2O2 generation. Comparative experiments with powder Cu3HITP2 showed that Cu3HITP2 grown on copper foam had a larger electrochemical specific surface area and exhibited superior OER and ORR properties, which was due to its two-dimensional needle-like morphology. In general, this study not only provides a method for in-situ growth of MOF materials on copper foam but also provides new ideas for developing two-dimensional conductive MOF materials in the field of electrocatalysis.
  • 加载中
    1. [1]

      Chen, Z.; Yu, A.; Higgins, D.; Li, H.; Wang, H. J.; Chen, Z. W. Nano Lett. 2012, 12, 1946. doi: 10.1021/nl2044327  doi: 10.1021/nl2044327

    2. [2]

      Lee, D. U.; Xu, P.; Cano, Z. P.; Kashkooli, A.G.; Park, M. G.; Chen, Z. W. J. Mater. Chem. A 2016, 4, 7107. doi: 10.1039/C6TA00173D  doi: 10.1039/C6TA00173D

    3. [3]

      Mamaca, N.; Mayousse, E.; Arrii-Clacens, S.; Napporn, T. W.; Servat, K.; Guillet, N.; Kokoh, K. B. Appl. Catal. B 2012, 111, 376. doi: 10.1016/j.apcatb.2011.10.020  doi: 10.1016/j.apcatb.2011.10.020

    4. [4]

      Huang, Y. Y.; Wang, Y. Q.; Tang, C.; Wang, J.; Zhang, Q.; Wang, Y. B.; Zhang, J. T. Adv. Mater. 2019, 31, 803800. doi: 10.1002/adma.201803800  doi: 10.1002/adma.201803800

    5. [5]

      Shinde, S. S.; Lee, C. H.; Sami, A.; Kim, D. H.; Lee, S. U; Lee, J. H. ACS Nano 2017, 17, 347. doi: 10.1021/acsnano.6b05914  doi: 10.1021/acsnano.6b05914

    6. [6]

      Zhang, H.; Wang, T. T.; Sumboja, A.; Zang, W. J.; Xie, J. P.; Gao, D. Q.; Pennycock, S. J.; Liu, Z. L.; Guan, C.; et al. Adv. Funct. Mater. 2018, 28, 1804846. doi: 10.1002/adfm.201804846  doi: 10.1002/adfm.201804846

    7. [7]

      Ma, T. Y.; Dai, S.; Jaroniec, M.; Qiao, S. Z. J. Am. Chem. Soc. 2014, 136, 13925. doi: 10.1021/ja5082553  doi: 10.1021/ja5082553

    8. [8]

      Fu, G. T.; Cui, Z. M.; Chen, Y. F.; Li, Y. T.; Tang, Y. W.; John, B. G. Adv. Energy Mater. 2017, 7, 1601172. doi: 10.1002/aenm.201601172  doi: 10.1002/aenm.201601172

    9. [9]

      Li, S.; Cheng, C.; Zhao, X. J.; Schmidt, J.; Thomas, A. Angew. Chem. Int. Ed. 2018, 57, 1856. doi: 10.1002/aenm.201702900  doi: 10.1002/aenm.201702900

    10. [10]

      Jiang, Y.; Deng, Y. P.; Fu, J.; Lee, D. U.; Liang, R. L.; Zachary, P. C.; Liu, Y. S.; Bai, Z. Y.; Sooyeon, H.; Yang, L.; et al. Adv. Energy Mater. 2018, 8, 1702900. doi: 10.1002/anie.201710852  doi: 10.1002/anie.201710852

    11. [11]

      Chen, G. B.; Zhang, J.; Wang, F. X.; Wang, L. L.; Liao, Z. Q.; Zschech, E.; Müllen, K.; Feng, X. L. Chemistry 2018, 24, 18413. doi: 10.1002/chem.201804339  doi: 10.1002/chem.201804339

    12. [12]

      Shinde, S. S.; Lee, C. H.; Yu, J. Y.; Kim, D. H.; Lee, S. U.; Lee, J. H. ACS Nano 2018, 12, 596. doi: 10.1021/acsnano.7b07473  doi: 10.1021/acsnano.7b07473

    13. [13]

      Wang, C. H.; Liu, X. L.; Demir, N. K.; Chen, J. P.; Li, K. Chem. Soc. Rev. 2016, 45, 5107. doi: 10.1039/c6cs00362a  doi: 10.1039/c6cs00362a

    14. [14]

      Furukawa, H.; Cordova, K. E.; O'Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444. doi: 10.1126/science.1230444  doi: 10.1126/science.1230444

    15. [15]

      Lee, J. Y.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S. T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38, 1450. doi: 10.1039/b807080f  doi: 10.1039/b807080f

    16. [16]

      Meek, S. T.; Greathouse, J. A.; Allendorf, M. D. Adv. Mater. 2011, 23, 249. doi: 10.1002/adma.201002854  doi: 10.1002/adma.201002854

    17. [17]

      Stock, N.; Biswas, S. Chem. Rev. 2012, 112, 933. doi: 10.1021/cr200304e  doi: 10.1021/cr200304e

    18. [18]

      Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R. A. Chem. Soc. Rev. 2014, 43, 6062. doi: 10.1039/c4cs00101j  doi: 10.1039/c4cs00101j

    19. [19]

      Yang, X. D.; Chen, C.; Zhou, Z. Y.; Sun, S. G. Acta Phys. –Chim. Sin. 2019, 35 (5), 472.  doi: 10.3866/PKU.WHXB201806131

    20. [20]

      Sun, L.; Campbell, M. G.; Dinca, M. Angew. Chem. Int. Ed. 2016, 55, 3566. doi: 10.1002/ange.201506219  doi: 10.1002/ange.201506219

    21. [21]

      Sheberla, D.; Bachman, J. C.; Elias, J. S.; Elias, J. S.; Sun, C. J.; Yang, S. H. Nat. Mater. 2017, 16, 220. doi: 10.1038/NMAT4766  doi: 10.1038/NMAT4766

    22. [22]

      Zhong, H. X.; Wang, J.; Zhang, Y. W.; Xu, W. L.; Xing, W.; Xu, D.; Zhang, Y. F.; Zhang, X. B. Angew. Chem. Int. Ed. 2014, 53, 14235. doi: 10.1002/anie.201408990  doi: 10.1002/anie.201408990

    23. [23]

      Wang, L.; Feng, X.; Ren, L. T.; Piao, Q. H.; Zhong, J. Q.; Wang, Y. B.; Li, H. W.; Chen, Y. F.; Wang, B. J. Am. Chem. Soc. 2015, 137, 4920. doi: 10.1021/jacs.5b01613  doi: 10.1021/jacs.5b01613

    24. [24]

      Jahan, M.; Liu, Z.; Loh, K. P. Adv. Funct. Mater.2013, 23, 5363. doi: 10.1002/adfm.201300510  doi: 10.1002/adfm.201300510

    25. [25]

      Sheberla, D.; Sun, L.; Blood-Forsythe, M.A.; Er, S.; Wade, C. R.; Brozek, C. K.; Aspuru-Guzik, A.; Dinca, M. J. Am. Chem. Soc. 2014, 136, 8859. doi: 10.1021/ja502765n  doi: 10.1021/ja502765n

    26. [26]

      Campbell, M. G.; Sheberla, D.; Liu, S. F.; Swager, T. M.; Dinca, M. Angew. Chem. Int. Ed. 2015, 54, 4349. doi: 10.1002/ange.201411854  doi: 10.1002/ange.201411854

    27. [27]

      Campbell, M. G.; Liu, S. F.; Swager, T. M.; Dinca, M. J. Am. Chem. Soc. 2015, 137, 13780. doi: 10.1021/jacs.5b09600  doi: 10.1021/jacs.5b09600

    28. [28]

      Dou, J. H.; Sun, L.; Ge, Y.; Li, W. B.; Hendon, C. H.; Li, J.; Gul, S.; Yano, J.; Stach, E. A.; Dinca, M. J. Am. Chem. Soc. 2017, 139, 13608. doi: 10.1021/jacs.7b07234  doi: 10.1021/jacs.7b07234

    29. [29]

      Feng, D. W.; Lei, T.; Lukatskaya, M. R.; Park, J.; Huang, Z. H.; Lee, M.; Shaw, L.; Chen, S. C.; Yakovenko, A. A.; Kulkarni, A. Nat. Energy 2018, 3, 30. doi: 10.1038/s41560-017-0044-5  doi: 10.1038/s41560-017-0044-5

    30. [30]

      Miner, E. M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dinca, M. Nat. Commun. 2016, 7, 10942. doi: 10.1038/ncomms10942  doi: 10.1038/ncomms10942

    31. [31]

      Bao, J. Z.; Wang, S. L. Acta Phys. –Chim. Sin. 2011, 27, 2849.  doi: 10.3866/PKU.WHXB20112849

  • 加载中
    1. [1]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    2. [2]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    3. [3]

      Weicheng FengJingcheng YuYilan YangYige GuoGeng ZouXiaoju LiuZhou ChenKun DongYuefeng SongGuoxiong WangXinhe Bao . Regulating the High Entropy Component of Double Perovskite for High-Temperature Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(6): 2306013-0. doi: 10.3866/PKU.WHXB202306013

    4. [4]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    5. [5]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    6. [6]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    7. [7]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    8. [8]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    11. [11]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    12. [12]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    14. [14]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    15. [15]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Kai PENGXinyi ZHAOZixi CHENXuhai ZHANGYuqiao ZENGJianqing JIANG . Progress in the application of high-entropy alloys and high-entropy ceramics in water electrolysis. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1257-1275. doi: 10.11862/CJIC.20240454

    18. [18]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    19. [19]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    20. [20]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

Metrics
  • PDF Downloads(32)
  • Abstract views(1270)
  • HTML views(205)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return