Citation: Bo Fang, Ligang Feng. PtCo-NC Catalyst Derived from the Pyrolysis of Pt-Incorporated ZIF-67 for Alcohols Fuel Electrooxidation[J]. Acta Physico-Chimica Sinica, ;2020, 36(7): 190502. doi: 10.3866/PKU.WHXB201905023 shu

PtCo-NC Catalyst Derived from the Pyrolysis of Pt-Incorporated ZIF-67 for Alcohols Fuel Electrooxidation

  • Corresponding author: Ligang Feng, ligang.feng@yzu.edu.cn
  • Received Date: 5 May 2019
    Revised Date: 12 June 2019
    Accepted Date: 13 June 2019
    Available Online: 17 June 2019

    Fund Project: the National Natural Science Foundation of China 21603041

  • Alcohols fuel electro-oxidation is significant to the development of direct alcohols fuel cells, that are considered as a promising power source for portable electronic devices. Currently, the catalyst was restricted by the serious poisoning effect and high cost of noble metals. Developing low-cost Pt alloy with high performance and anti-CO poisoning ability was highly desired. In this work, PtCo-NC catalyst was synthesized by combining Pt nanoparticles with ZIF-67 after annealing in the tube furnace and the in situ generated N-doped carbon from ZIF-67 was functionalized to support the PtCo alloy nanoparticle. The structure and morphology were probed by X-ray diffraction, scanning electron microscope and transmission electron microscope, and the electrochemical performance was evaluated for alcohols of methanol and ethanol oxidation in the acid electrolyte. Compared with the reference sample of Pt/C, several times performance enhancement for alcohols fuel oxidation was found on PtCo-NC catalyst as well as the good catalytic stability. Specifically, the peak current density of PtCo-NC was 79.61 mA∙cm−2 for methanol oxidation, about 2.2 times higher than that of the Pt/C electrode (36.97 mA∙cm−2) and 2.5 times higher than that of the commercial Pt/C electrode (31.23 mA∙cm−2); it was 62.69 mA∙cm–2 for ethanol oxidation, about 1.65 times higher than that of Pt/C catalyst (37.99 mA∙cm−2) and commercial Pt/C electrode (37.77 mA∙cm−2). These catalytic performances were also much higher than some analogous catalysts developed for alcohols fuel oxidation. A much higher anti-CO poisoning ability was demonstrated by the CO stripping voltammetry experiment, in which the COad oxidation peak potential for PtCo-NC was 0.46 V, ca. 110 mV negative shift compared with Pt/C catalyst at 0.57 V. A strong electronic effect was indicated by the peak position shifting to the lower binding energy direction by 0.3 eV on PtCo-NC compared with Pt/C reference catalyst. According to the d-band center theory, the electron-enriched state of Pt will decrease the interaction strength of poisoning intermediates adsorbed on its surface; Moreover, according to the bifunctional catalytic mechanism, the presence of Co can form the adsorbed oxygen-containing species (OH) more easily than Pt at low potentials, and this oxygen-species were helpful in the oxidation of COad at neighboring Pt sites. The high catalytic performance for alcohols fuel oxidation could be due to the largely improved anti-CO poisoning ability and the synergistic effect between the in situ formed PtCo nanoparticles and the N-doped carbon support.
  • 加载中
    1. [1]

      Lu, Q. Q.; Sun, L. T.; Zhao, X.; Huang, J. S.; Han, C.; Yang, X. R. Nano Res. 2018, 11, 2562. doi: 10.1007/s12274-017-1881-z  doi: 10.1007/s12274-017-1881-z

    2. [2]

      Qian, H. H.; Han, X.; Zhao, Y.; Su, Y. Q. Acta Phys. -Chim. Sin. 2017, 33, 1822.  doi: 10.3866/PKU.WHXB201705022

    3. [3]

      Guo, J. C.; Lin, Y. F.; Tian, N.; Sun, S. G. Acta Phys. -Chim. Sin. 2019, 35, 749.  doi: 10.3866/PKU.WHXB201810051

    4. [4]

      Zhang, X. B.; Tian, S. J.; Yu, W. J.; Lu, B. Q.; Shen, T. Y.; Xu, L.; Sun, D. M.; Zhang, S. L.; Tang, Y. W. CrystEngComm 2018, 20, 4277. doi: 10.1039/c8ce00601f  doi: 10.1039/c8ce00601f

    5. [5]

      Wang, F. L.; Yu, H. G.; Tian, Z. Q.; Xue, H. G.; Feng, L. G. J. Energy Chem. 2018, 27, 395. doi: 10.1016/j.jechem.2017.12.011  doi: 10.1016/j.jechem.2017.12.011

    6. [6]

      Huang, L.; Jiang, Z.; Gong, W. H.; Shen, P. K. ACS Appl. Nano Mater. 2018, 1, 5019. doi: 10.1021/acsanm.8b01113  doi: 10.1021/acsanm.8b01113

    7. [7]

      Kakati, N.; Maiti, J.; Lee, S. H.; Jee, S. H.; Viswanathan, B.; Yoon, Y. S. Chem. Rev. 2014, 114, 12397. doi: 10.1021/cr400389f  doi: 10.1021/cr400389f

    8. [8]

      Profatilova, I.; Jacques, P. A.; Escribano, S. J. Electrochem. Soc. 2018, 165, F3251. doi: 10.1149/2.0281806jes  doi: 10.1149/2.0281806jes

    9. [9]

      Xu, C. W.; Zeng, R.; Shen, P. K.; Wei, Z. D. Electrochim. Acta 2005, 51, 1031. doi: 10.1016/j.electacta.2005.05.041  doi: 10.1016/j.electacta.2005.05.041

    10. [10]

      Wang, F. L.; Xue, H. G.; Tian, Z. Q.; Xing, W.; Feng, L. G. J. Power Sources 2018, 375, 37. doi: 10.1016/j.jpowsour.2017.11.055  doi: 10.1016/j.jpowsour.2017.11.055

    11. [11]

      Ocampo-Restrepo, V. K.; Calderon-Cardenas, A.; Lizcano-Valbuena, W. H. Electrochim. Acta 2017, 246, 475. doi: 10.1016/j.electacta.2017.06.014  doi: 10.1016/j.electacta.2017.06.014

    12. [12]

      Su, Y. K.; Liu, H.; Feng, M.; Yan, Z. L.; Cheng, Z. H.; Tang, J. N.; Yang, H. T. Electrochim. Acta 2015, 161, 124. doi: 10.1016/j.electacta.2015.02.041  doi: 10.1016/j.electacta.2015.02.041

    13. [13]

      Xu, C. W.; Su, Y. Z.; Tan, L. L.; Liu, Z. L.; Zhang, J. H.; Chen, S. A.; Jiang, S. P. Electrochim. Acta 2009, 54, 6322. doi: 10.1016/j.electacta.2009.05.088  doi: 10.1016/j.electacta.2009.05.088

    14. [14]

      Lu, X. Q.; Deng, Z. G.; Guo, C.; Wang, W. L.; Wei, S. X.; Ng, S. P.; Chen, X. F.; Ding, N.; Guo, W. Y.; Wu, C. M. L. ACS Appl. Mater. Interfaces 2016, 8, 12194. doi: 10.1021/acsami.6b02932  doi: 10.1021/acsami.6b02932

    15. [15]

      Roca-Ayats, M.; Garcia, G.; Soler-Vicedo, M.; Pastor, E.; Lazaro, M. J.; Martinez-Huerta, M. V. Int. J. Hydrogen Energy 2015, 40, 14519. doi: 10.1016/j.ijhydene.2015.05.175  doi: 10.1016/j.ijhydene.2015.05.175

    16. [16]

      Xu, J. F.; Liu, X. Y.; Chen, Y.; Zhou, Y. M.; Lu, T. H.; Tang, Y. W. J. Mater. Chem. 2012, 22, 23659. doi: 10.1039/c2jm35649j  doi: 10.1039/c2jm35649j

    17. [17]

      Xia, B. Y.; Yan, Y.; Li, N.; Wu, H. B.; Lou, X. W.; Wang, X. Nat. Energy 2016, 1, 15006. doi: 10.1038/nenergy.2015.6  doi: 10.1038/nenergy.2015.6

    18. [18]

      Shen, K.; Chen, L.; Long, J. L.; Zhong, W.; Li, Y. W. ACS Catal. 2015, 5, 5264. doi: 10.1021/acscatal.5b00998  doi: 10.1021/acscatal.5b00998

    19. [19]

      Sui, X. L.; Zhang, L. M.; Zhao, L.; Gu, D. M.; Huang, G. S.; Wang, Z. B. Int. J. Hydrogen Energy 2018, 43, 21899. doi: 10.1016/j.ijhydene.2018.09.223  doi: 10.1016/j.ijhydene.2018.09.223

    20. [20]

      Teranishi, T.; Hosoe, M.; Tanaka, T.; Miyake, M. J. Phys. Chem. B 1999, 103, 3818. doi: 10.1021/Jp983478m  doi: 10.1021/Jp983478m

    21. [21]

      Du, N. N.; Wang, C. M.; Long, R.; Xiong, Y. J. Nano Res. 2017, 10, 3228. doi: 10.1007/s12274-017-1611-6  doi: 10.1007/s12274-017-1611-6

    22. [22]

      Wang, F. L.; Fang, B.; Yu, X.; Feng, L. G. ACS Appl. Mater. Interfaces 2019, 11, 9496. doi: 10.1021/acsami.8b18029  doi: 10.1021/acsami.8b18029

    23. [23]

      Zhang, E. H.; Xie, Y.; Ci, S. Q.; Jia, J. C.; Cai, P. W.; Yi, L. C.; Wen, Z. H. J. Mater. Chem. A 2016, 4, 17288. doi: 10.1039/c6ta06185k  doi: 10.1039/c6ta06185k

    24. [24]

      Sheng, Z. H.; Shao, L.; Chen, J. J.; Bao, W. J.; Wang, F. B.; Xia, X. H. ACS Nano 2011, 5, 4350. doi: 10.1021/nn103584t  doi: 10.1021/nn103584t

    25. [25]

      Jiang, L. Y.; Huang, X. Y.; Wang, A. J.; Li, X. S.; Yuan, J. H.; Feng, J. J. J. Mater. Chem. A 2017, 5, 10554. doi: 10.1039/c7ta01976a  doi: 10.1039/c7ta01976a

    26. [26]

      Dong, H. Z.; Dong, L. F. J. Inorg. Organomet. Polym. Mater. 2011, 21, 754. doi: 10.1007/s10904-011-9526-2  doi: 10.1007/s10904-011-9526-2

    27. [27]

      Sun, J. T.; Dou, M. L.; Zhang, Z. P.; Ji, J.; Wang, F. Electrochim. Acta 2016, 215, 447. doi: 10.1016/j.electacta.2016.08.133  doi: 10.1016/j.electacta.2016.08.133

    28. [28]

      Liu, F.; Lee, J. Y.; Zhou, W. J. J. Phys. Chem. B 2004, 108, 17959. doi: 10.1021/jp0472360  doi: 10.1021/jp0472360

    29. [29]

      Habibi, B.; Ghaderi, S. Iran. J. Hydrogen Fuel Cell 2016, 1, 19. doi: 10.22104/ijhfc.2016.314  doi: 10.22104/ijhfc.2016.314

    30. [30]

      D́Villa-Silva, M.; Simões, F. C.; De Souza, R. F. B.; Silva, J. C. M.; Santos, M. C. ECS Trans. 2011, 41, 1299. doi: 10.1149/1.3635661  doi: 10.1149/1.3635661

    31. [31]

      Pang, H. L.; Chen, J. H.; Yang, L.; Liu, B.; Zhong, X. X.; Wei, X. G. J. Solid State Electrochem. 2007, 12, 237. doi: 10.1007/s10008-007-0383-4  doi: 10.1007/s10008-007-0383-4

    32. [32]

      Liu, B.; Chen, J. H.; Zhong, X. X.; Cui, K. Z.; Zhou, H. H.; Kuang, Y. F. J. Colloid Interface Sci. 2007, 307, 139. doi: 10.1016/j.jcis.2006.11.027  doi: 10.1016/j.jcis.2006.11.027

    33. [33]

      De Souza, R. F. B.; Flausino, A. E. A.; Rascio, D. C.; Oliveira, R. T. S.; Neto, E. T.; Calegaro, M. L.; Santos, M. C. Appl. Catal. B: Environ. 2009, 91, 516. doi: 10.1016/j.apcatb.2009.06.022  doi: 10.1016/j.apcatb.2009.06.022

  • 加载中
    1. [1]

      Jialin CaiYizhe ChenRuiwen ZhangCheng YuanZeyu JinYongting ChenShiming ZhangJiujun Zhang . Interfacial Pt-N coordination for promoting oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(2): 110255-. doi: 10.1016/j.cclet.2024.110255

    2. [2]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    3. [3]

      Hao WANGKun TANGJiangyang SHAOKezhi WANGYuwu ZHONG . Electro-copolymerized film of ruthenium catalyst and redox mediator for electrocatalytic water oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2193-2202. doi: 10.11862/CJIC.20240176

    4. [4]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    5. [5]

      Wen-Jing LiJun-Bo WangYu-Heng LiuMo ZhangZhan-Hui Zhang . Molybdenum-doped carbon nitride as an efficient heterogeneous catalyst for direct amination of nitroarenes with arylboronic acids. Chinese Chemical Letters, 2025, 36(3): 110001-. doi: 10.1016/j.cclet.2024.110001

    6. [6]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    7. [7]

      Kexin YinJingren YangYanwei LiQian LiXing Xu . Metal-free diatomaceous carbon-based catalyst for ultrafast and anti-interference Fenton-like oxidation. Chinese Chemical Letters, 2024, 35(12): 109847-. doi: 10.1016/j.cclet.2024.109847

    8. [8]

      Zimo Peng Quan Zhang Gaocan Qi Hao Zhang Qian Liu Guangzhi Hu Jun Luo Xijun Liu . Nanostructured Pt@RuOx catalyst for boosting overall acidic seawater splitting. Chinese Journal of Structural Chemistry, 2024, 43(1): 100191-100191. doi: 10.1016/j.cjsc.2023.100191

    9. [9]

      Gang HuChun WangQinqin WangMingyuan ZhuLihua Kang . The controlled oxidation states of the H4PMo11VO40 catalyst induced by plasma for the selective oxidation of methacrolein. Chinese Chemical Letters, 2025, 36(2): 110298-. doi: 10.1016/j.cclet.2024.110298

    10. [10]

      Minying WuXueliang FanWenbiao ZhangBin ChenTong YeQian ZhangYuanyuan FangYajun WangYi Tang . Highly dispersed Ru nanospecies on N-doped carbon/MXene composite for highly efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2024, 35(4): 109258-. doi: 10.1016/j.cclet.2023.109258

    11. [11]

      Wenhao FengChunli LiuZheng LiuHuan PangIn-situ growth of N-doped graphene-like carbon/MOF nanocomposites for high-performance supercapacitor. Chinese Chemical Letters, 2024, 35(12): 109552-. doi: 10.1016/j.cclet.2024.109552

    12. [12]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    13. [13]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    14. [14]

      Yanling YangZhenfa DingHuimin WangJianhui LiYanping ZhengHongquan GuoLi ZhangBing YangQingqing GuHaifeng XiongYifei Sun . Dynamic tracking of exsolved PdPt alloy/perovskite catalyst for efficient lean methane oxidation. Chinese Chemical Letters, 2024, 35(4): 108585-. doi: 10.1016/j.cclet.2023.108585

    15. [15]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    16. [16]

      Baokang GengXiang ChuLi LiuLingling ZhangShuaishuai ZhangXiao WangShuyan SongHongjie Zhang . High-efficiency PdNi single-atom alloy catalyst toward cross-coupling reaction. Chinese Chemical Letters, 2024, 35(7): 108924-. doi: 10.1016/j.cclet.2023.108924

    17. [17]

      Bin ZhaoHeping LuoJiaqing LiuSha ChenHan XuYu LiaoXue Feng LuYan QingYiqiang Wu . S-doped carbonized wood fiber decorated with sulfide heterojunction-embedded S, N-doped carbon microleaf arrays for efficient high-current-density oxygen evolution. Chinese Chemical Letters, 2025, 36(5): 109919-. doi: 10.1016/j.cclet.2024.109919

    18. [18]

      Chaozheng HeMenghui XiChenxu ZhaoRan WangLing FuJinrong Huo . Highly N2 dissociation catalyst: Ir(100) and Ir(110) surfaces. Chinese Chemical Letters, 2025, 36(3): 109671-. doi: 10.1016/j.cclet.2024.109671

    19. [19]

      Daheng WenWeiwei FangYongmei LiuTao Tu . Valorization of carbon dioxide with alcohols. Chinese Chemical Letters, 2024, 35(7): 109394-. doi: 10.1016/j.cclet.2023.109394

    20. [20]

      Weichen ZhuWei ZuoPu WangWei ZhanJun ZhangLipin LiYu TianHong QiRui Huang . Fe-N-C heterogeneous Fenton-like catalyst for the degradation of tetracycline: Fe-N coordination and mechanism studies. Chinese Chemical Letters, 2024, 35(9): 109341-. doi: 10.1016/j.cclet.2023.109341

Metrics
  • PDF Downloads(15)
  • Abstract views(874)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return