Citation: Pan Wenli, Guan Wenhao, Jiang Yinzhu. Research Advances in Polyanion-Type Cathodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190501. doi: 10.3866/PKU.WHXB201905017 shu

Research Advances in Polyanion-Type Cathodes for Sodium-Ion Batteries

  • Corresponding author: Jiang Yinzhu, yzjiang@zju.edu.cn
  • & These authors contributed equally to this work
  • Received Date: 2 May 2019
    Revised Date: 5 June 2019
    Accepted Date: 18 June 2019
    Available Online: 24 May 2019

    Fund Project: the Zhejiang Provincial Natural Science Foundation, China LR18B030001the Fundamental Research Funds for the Central Universities, China 2018XZZX002-08the National Natural Science Foundation of China 51722105The project was supported by the National Natural Science Foundation of China (51722105), the Zhejiang Provincial Natural Science Foundation, China (LR18B030001), and the Fundamental Research Funds for the Central Universities, China (2018XZZX002-08)

  • Because of their high energy density and long cycle life, lithium-ion batteries (LIBs) have dominated the portable electronics market for over 20 years. However, with the increasing demand for large-scale energy storage systems for grid applications, the price of Li resources has increased owing to the low abundance of Li in Earth's crust and non-uniform distribution on the planet. Because Na has similar physical and chemical properties as Li and is an abundant natural resource, room-temperature sodium-ion batteries (SIBs) are expected to be among the most promising next-generation large grid energy storage devices. It is known that the cathode, anode, separator and electrolyte materials are the main components of batteries. Among these, Na-containing cathode materials are of critical importance. As a cathode material for SIBs, polyanion-type compounds have become a hot research topic owing to their versatile structural frameworks, high thermal stabilities, high ambient stabilities even in the charging state, small volume changes, tunable operating voltage by tuning the chemical environment of the polyanions, and high operating voltages owing to the inductive effects of the polyanionic groups (PO43−, SO42−, SiO44−, etc.). In particular, for Earth's abundant resources and inherent stability, polyanion-based compounds are suitable for large-scale stationary energy storage. Taking grid balancing into account, batteries with fast charge rates are in demand, which requires cathodes having high rate capability. However, despite the presence of ion diffusion channels in polyanion compounds, the electronic transport channels are blocked owing to the separation of the metal polyhedral and the strong electronegativity of the anions, leading to poor electron conductivity, which largely limits the rate capability of polyanion compounds. Therefore, it is crucial to understand the inherent limitation of the kinetics in terms of the structural aspects and to determine strategies for improving the rate capability. This review discusses the intrinsic reasons for the factors impacting ion diffusion based on the different structures of polyanion-type cathodes. From the perspectives of surface modification and morphology, strategies for enhancing the transport of sodium ions and electrons at the surface and interface are summarized and discussed. Then, from the standpoint of the hierarchical structures of materials to the design of a structural framework, which have been rarely reported, this review proposes schemes that intrinsically enhance the rate capability of polyanion compounds and provides a perspective on developments that can further improve the rate capability of cathode materials. This review provides suggestions for designing and optimizing high-rate polyanion-type and other kinds of cathodes from both academic and practical viewpoints.
  • 加载中
    1. [1]

      Evans, A.; Strezov, V.; Evans, T. J. Renew. Sust. Energ. Rev. 2012, 16, 4141. doi: 10.1016/j.rser.2012.03.048  doi: 10.1016/j.rser.2012.03.048

    2. [2]

      Liu, J.; Zhang, J. G.; Yang, Z.; Lemmon, J. P.; Imhoff, C.; Graff, G. L.; Li, L.; Hu, J.; Wang, C.; Xiao, J. Adv. Funct. Mater. 2013, 23, 929. doi: 10.1002/adfm.201200690  doi: 10.1002/adfm.201200690

    3. [3]

      Ellis, B. L.; Nazar, L. F. Curr. Opin. Solid State Mat. Sci. 2012, 16, 168. doi: 10.1016/j.cossms.2012.04.002  doi: 10.1016/j.cossms.2012.04.002

    4. [4]

      Xiang, X.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343. doi: 10.1002/adma.201501527  doi: 10.1002/adma.201501527

    5. [5]

      Guo, S. P.; Li, J. C.; Xu, Q. T.; Ma, Z.; Xue, H. G. J. Power Sources 2017, 361, 285. doi: 10.1016/j.jpowsour.2017.07.002  doi: 10.1016/j.jpowsour.2017.07.002

    6. [6]

      Wang, P. F.; You, Y.; Yin, Y. X.; Guo, Y. G. Adv. Energy Mater. 2018, 8. doi: 10.1002/aenm.201701912  doi: 10.1002/aenm.201701912

    7. [7]

      Jiang, Y.; Yu, S.; Wang, B.; Li, Y.; Sun, W.; Lu, Y.; Yan, M.; Song, B.; Dou, S. Adv. Funct. Mater. 2016, 26, 5315. doi: 10.1002/adfm.201600747  doi: 10.1002/adfm.201600747

    8. [8]

      Wang, B.; Han, Y.; Wang, X.; Bahlawane, N.; Pan, H.; Yan, M.; Jiang, Y. iScience 2018, 3, 110. doi: 10.1016/j.isci.2018.04.008  doi: 10.1016/j.isci.2018.04.008

    9. [9]

      Barpanda, P.; Lander, L.; Nishimura, S. I.; Yamada, A. Adv. Energy Mater. 2018, 8, 1703055. doi: 10.1002/aenm.201703055  doi: 10.1002/aenm.201703055

    10. [10]

      Masquelier, C.; Croguennec, L. Chem. Rev. 2013, 113, 6552. doi: 10.1021/cr3001862  doi: 10.1021/cr3001862

    11. [11]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. doi: 10.1021/cr500192f  doi: 10.1021/cr500192f

    12. [12]

      Ouyang, X.; Lei, M.; Shi, S.; Luo, C.; Liu, D.; Jiang, D.; Ye, Z.; Lei, M. J. Alloy. Compd. 2009, 476, 462. doi: 10.1016/j.jallcom.2008.09.028  doi: 10.1016/j.jallcom.2008.09.028

    13. [13]

      Balke, N.; Jesse, S.; Morozovska, A.; Eliseev, E.; Chung, D.; Kim, Y.; Adamczyk, L.; Garcia, R.; Dudney, N.; Kalinin, S. Nat. Nanotechnol. 2010, 5, 749. doi: 10.1038/nnano.2010.174  doi: 10.1038/nnano.2010.174

    14. [14]

      Padhi, A. K.; Nanjundaswamy, K. S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1188. doi: 10.1149/1.1837571  doi: 10.1149/1.1837571

    15. [15]

      Yamada, A.; Chung, S. C.; Hinokuma, K. J. Electrochem. Soc. 2001, 148, A224. doi: 10.1149/1.1348257  doi: 10.1149/1.1348257

    16. [16]

      Huang, H.; Yin, S. C.; Nazar, L. S. Electrochem. Solid State Lett. 2001, 4, A170. doi: 10.1149/1.1396695  doi: 10.1149/1.1396695

    17. [17]

      Oh, S. M.; Myung, S. T.; Hassoun, J.; Scrosati, B.; Sun, Y. K. Electrochem. Commun. 2012, 22, 149. doi: 10.1016/j.elecom.2012.06.014  doi: 10.1016/j.elecom.2012.06.014

    18. [18]

      Zhu, Y.; Xu, Y.; Liu, Y.; Luo, C.; Wang, C. Nanoscale 2013, 5, 780. doi: 10.1039/C2NR32758A  doi: 10.1039/C2NR32758A

    19. [19]

      Casas-Cabanas, M.; Roddatis, V. V.; Saurel, D.; Kubiak, P.; Carretero-González, J.; Palomares, V.; Serras, P.; Rojo, T. J. Mater. Chem. 2012, 22, 17421. doi: 10.1039/C2JM33639A  doi: 10.1039/C2JM33639A

    20. [20]

      Kim, J.; Seo, D. H.; Kim, H.; Park, I.; Yoo, J. K.; Jung, S. K.; Park, Y. U.; Goddard III, W. A.; Kang, K. Energy Environ. Sci. 2015, 8, 540. doi: 10.1039/C4EE03215B  doi: 10.1039/C4EE03215B

    21. [21]

      Barpanda, P.; Ye, T.; Lu, J.; Yamada, Y.; Chung, S. C.; Nishimura, S.; Okubo, M.; Zhou, H.; Yamada, A. ECS Trans. 2013, 50, 71. doi: 10.1149/05024.0071ecst  doi: 10.1149/05024.0071ecst

    22. [22]

      Barpanda, P.; Liu, G.; Ling, C. D.; Tamaru, M.; Avdeev, M.; Chung, S. C.; Yamada, Y.; Yamada, A. Chem. Mat. 2013, 25, 3480. doi: 10.1021/cm401657c  doi: 10.1021/cm401657c

    23. [23]

      Kim, H.; Park, C. S.; Choi, J. W.; Jung, Y. Angew. Chem. Int. Edit. 2016, 55, 6662. doi: 10.1002/anie.201601022  doi: 10.1002/anie.201601022

    24. [24]

      Gopalakrishnan, J.; Rangan, K. K. Chem. Mat. 1992, 4, 745. doi: 10.1021/cm00022a001  doi: 10.1021/cm00022a001

    25. [25]

      Lim, S. Y.; Kim, H.; Shakoor, R.; Jung, Y.; Choi, J. W. J. Electrochem. Soc. 2012, 159, A1393. doi: 10.1149/2.015209jes  doi: 10.1149/2.015209jes

    26. [26]

      Jian, Z.; Yuan, C.; Han, W.; Lu, X.; Gu, L.; Xi, X.; Hu, Y. S.; Li, H.; Chen, W.; Chen, D. Adv. Funct. Mater. 2014, 24, 4265. doi: 10.1002/adfm.201400173  doi: 10.1002/adfm.201400173

    27. [27]

      Zhu, C.; Song, K.; van Aken, P. A.; Maier, J.; Yu, Y. Nano Lett. 2014, 14, 2175. doi: 10.1021/nl500548a  doi: 10.1021/nl500548a

    28. [28]

      Zhou, W.; Xue, L.; Lü, X.; Gao, H.; Li, Y.; Xin, S.; Fu, G.; Cui, Z.; Zhu, Y.; Goodenough, J. B. Nano Lett. 2016, 16, 7836. doi: 10.1021/acs.nanolett.6b04044  doi: 10.1021/acs.nanolett.6b04044

    29. [29]

      Gao, H.; Seymour, I. D.; Xin, S.; Xue, L.; Henkelman, G.; Goodenough, J. B. J. Am. Chem. Soc. 2018, 140, 18192. doi: 10.1021/jacs.8b11388  doi: 10.1021/jacs.8b11388

    30. [30]

      Gover, R.; Bryan, A.; Burns, P.; Barker, J. Solid State Ion. 2006, 177, 1495. doi: 10.1016/j.ssi.2006.07.028  doi: 10.1016/j.ssi.2006.07.028

    31. [31]

      Serras, P.; Palomares, V.; Goñi, A.; de Muro, I. G.; Kubiak, P.; Lezama, L.; Rojo, T. J. Mater. Chem. 2012, 22, 22301. doi: 10.1039/c2jm35293a  doi: 10.1039/c2jm35293a

    32. [32]

      Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S. Nat. Commun. 2019, 10, 1480. doi: 10.1038/s41467-019-09170-5  doi: 10.1038/s41467-019-09170-5

    33. [33]

      Kee, Y.; Dimov, N.; Staykov, A.; Okada, S. Mater. Chem. Phys. 2016, 171, 45. doi: 10.1016/j.matchemphys.2016.01.033  doi: 10.1016/j.matchemphys.2016.01.033

    34. [34]

      Li, S.; Guo, J.; Ye, Z.; Zhao, X.; Wu, S.; Mi, J. X.; Wang, C. Z.; Gong, Z.; McDonald, M. J.; Zhu, Z. ACS Appl. Mater. Interfaces 2016, 8, 17233. doi: 10.1021/acsami.6b03969  doi: 10.1021/acsami.6b03969

    35. [35]

      Guan, W.; Pan, B.; Zhou, P.; Mi, J.; Zhang, D.; Xu, J.; Jiang, Y. ACS Appl. Mater. Interfaces 2017, 9, 22369. doi: 10.1021/acsami.7b02385  doi: 10.1021/acsami.7b02385

    36. [36]

      Chen, C. Y.; Matsumoto, K.; Nohira, T.; Hagiwara, R. Electrochem. Commun. 2014, 45, 63. doi: 10.1016/j.elecom.2014.05.017  doi: 10.1016/j.elecom.2014.05.017

    37. [37]

      Law, M.; Ramar, V.; Balaya, P. J. Power Sources 2017, 359, 277. doi: 10.1016/j.jpowsour.2017.05.069  doi: 10.1016/j.jpowsour.2017.05.069

    38. [38]

      Zhang, D.; Ding, Z.; Yang, Y.; Zhao, S.; Huang, Q.; Chen, C.; Chen, L.; Wei, W. Electrochim. Acta 2018, 269, 694. doi: 10.1016/j.electacta.2018.03.045  doi: 10.1016/j.electacta.2018.03.045

    39. [39]

      Treacher, J. C.; Wood, S. M.; Islam, M. S.; Kendrick, E. Phys. Chem. Chem. Phys. 2016, 18, 32744. doi: 10.1039/c6cp06777h  doi: 10.1039/c6cp06777h

    40. [40]

      Rangasamy, V. S.; Thayumanasundaram, S.; Locquet, J. P. Electrochim. Acta 2018, 276, 102. doi: 10.1016/j.electacta.2018.04.166  doi: 10.1016/j.electacta.2018.04.166

    41. [41]

      Reynaud, M.; Ati, M.; Boulineau, S.; Sougrati, M. T.; Melot, B. C.; Rousse, G.; Chotard, J. N.; Tarascon, J. M. ECS Trans. 2013, 50, 11. doi: 10.1149/05024.0011ecst  doi: 10.1149/05024.0011ecst

    42. [42]

      Barpanda, P.; Oyama, G.; Ling, C. D.; Yamada, A. Chem. Mat. 2014, 26, 1297. doi: 10.1021/cm4033226  doi: 10.1021/cm4033226

    43. [43]

      Meng, Y.; Zhang, S.; Deng, C. J. Mater. Chem. A 2015, 3, 4484. doi: 10.1039/c4ta06711h  doi: 10.1039/c4ta06711h

    44. [44]

      Meng, Y.; Li, Q.; Yu, T.; Zhang, S.; Deng, C. CrystEngComm 2016, 18, 1645. doi: 10.1039/c5ce02046h  doi: 10.1039/c5ce02046h

    45. [45]

      Reynaud, M.; Rousse, G.; Abakumov, A. M.; Sougrati, M. T.; Van Tendeloo, G.; Chotard, J. N.; Tarascon, J. M. J. Mater. Chem. A 2014, 2, 2671. doi: 10.1039/c3ta13648e  doi: 10.1039/c3ta13648e

    46. [46]

      Singh, P.; Shiva, K.; Celio, H.; Goodenough, J. B. Energy Environ. Sci. 2015, 8, 3000. doi: 10.1039/c5ee02274f  doi: 10.1039/c5ee02274f

    47. [47]

      Yu, C. J.; Choe, S. H.; Ri, G. C.; Kim, S. C.; Ryo, H. S.; Kim, Y. J. Phys. Rev. Appl. 2017, 8, 024029. doi: 10.1103/PhysRevApplied.8.024029  doi: 10.1103/PhysRevApplied.8.024029

    48. [48]

      Chong, X. Y.; Jiang, Y.; Feng, J. J. Micromech. Mol. Phys. 2017, 2, 1750002. doi: 10.1142/S2424913017500023  doi: 10.1142/S2424913017500023

    49. [49]

      Barpanda, P.; Oyama, G.; Nishimura, S. I.; Chung, S. C.; Yamada, A. Nat. Commun. 2014, 5, 4358. doi: 10.1038/ncomms5358  doi: 10.1038/ncomms5358

    50. [50]

      Oyama, G.; Nishimura, S. I.; Suzuki, Y.; Okubo, M.; Yamada, A. ChemElectroChem 2015, 2, 1019. doi: 10.1002/celc.201500036  doi: 10.1002/celc.201500036

    51. [51]

      Meng, Y.; Yu, T.; Zhang, S.; Deng, C. J. Mater. Chem. A 2016, 4, 1624. doi: 10.1039/c5ta07696j  doi: 10.1039/c5ta07696j

    52. [52]

      Dwibedi, D.; Ling, C. D.; Araujo, R. B.; Chakraborty, S.; Duraisamy, S.; Munichandraiah, N.; Ahuja, R.; Barpanda, P. ACS Appl. Mater. Interfaces 2016, 8, 6982. doi: 10.1021/acsami.5b11302  doi: 10.1021/acsami.5b11302

    53. [53]

      Prosini, P. P.; Lisi, M.; Zane, D.; Pasquali, M. Solid State Ion. 2002, 148, 45. doi:10.1016/S0167-2738(02)00134-0  doi: 10.1016/S0167-2738(02)00134-0

    54. [54]

      Deiss, E. Electrochim. Acta 2005, 50, 2927. doi: 10.1016/j.electacta.2004.11.042  doi: 10.1016/j.electacta.2004.11.042

    55. [55]

      Yang, Z.; Feng, Y.; Li, Z.; Sang, S.; Zhou, Y.; Zeng, L. J. Electroanal. Chem. 2005, 580, 340. doi: 10.1016/j.jelechem.2005.04.004  doi: 10.1016/j.jelechem.2005.04.004

    56. [56]

      Das, S.; Majumder, S.; Katiyar, R. J. Power Sources 2005, 139, 261. doi: 10.1016/j.jpowsour.2004.06.056  doi: 10.1016/j.jpowsour.2004.06.056

    57. [57]

      Longoni, G.; Wang, J. E.; Jung, Y. H.; Kim, D. K.; Mari, C. M.; Ruffo, R. J. Power Sources 2016, 302, 61. doi: 10.1016/j.jpowsour.2015.10.033  doi: 10.1016/j.jpowsour.2015.10.033

    58. [58]

      Li, G.; Jiang, D.; Wang, H.; Lan, X.; Zhong, H.; Jiang, Y. J. Power Sources 2014, 265, 325. doi: 10.1016/j.jpowsour.2014.04.054  doi: 10.1016/j.jpowsour.2014.04.054

    59. [59]

      Song, W.; Ji, X.; Wu, Z.; Yang, Y.; Zhou, Z.; Li, F.; Chen, Q.; Banks, C. E. J. Power Sources 2014, 256, 258. doi: 10.1016/j.jpowsour.2014.01.025  doi: 10.1016/j.jpowsour.2014.01.025

    60. [60]

      Deng, G.; Chao, D.; Guo, Y.; Chen, Z.; Wang, H.; Savilov, S. V.; Lin, J.; Shen, Z. X. Energy Storage Mater. 2016, 5, 198. doi: 10.1016/j.ensm.2016.07.007  doi: 10.1016/j.ensm.2016.07.007

    61. [61]

      Lu, J.; Yamada, A. ChemElectroChem 2016, 3, 902. doi: 10.1002/celc.201500535  doi: 10.1002/celc.201500535

    62. [62]

      Rahman, M. M.; Sultana, I.; Mateti, S.; Liu, J.; Sharma, N.; Chen, Y. J. Mater. Chem. A 2017, 5, 16616. doi: 10.1039/C7TA04946C  doi: 10.1039/C7TA04946C

    63. [63]

      Liu, Y.; Zhang, N.; Wang, F.; Liu, X.; Jiao, L.; Fan, L. Z. Adv. Funct. Mater. 2018, 28, 1801917. doi: 10.1002/adfm.201801917  doi: 10.1002/adfm.201801917

    64. [64]

      Ali, G.; Lee, J. H.; Susanto, D.; Choi, S. W.; Cho, B. W.; Nam, K. W.; Chung, K. Y. ACS Appl. Mater. Interfaces 2016, 8, 15422. doi: 10.1016/j.elecom.2012.06.014  doi: 10.1016/j.elecom.2012.06.014

    65. [65]

      Barpanda, P.; Ye, T.; Nishimura, S. I.; Chung, S. C.; Yamada, Y.; Okubo, M.; Zhou, H.; Yamada, A. Electrochem. Commun. 2012, 24, 116. doi: 10.1021/acsami.6b04014  doi: 10.1021/acsami.6b04014

    66. [66]

      Jian, Z.; Zhao, L.; Pan, H.; Hu, Y. S.; Li, H.; Chen, W.; Chen, L. Electrochem. Commun. 2012, 14, 86. doi: 10.1016/j.elecom.2011.11.009  doi: 10.1016/j.elecom.2011.11.009

    67. [67]

      Rui, X.; Sun, W.; Wu, C.; Yu, Y.; Yan, Q. Adv. Mater. 2015, 27, 6670. doi: 10.1002/adma.201502864  doi: 10.1002/adma.201502864

    68. [68]

      Liu, Q.; Meng, X.; Wei, Z.; Wang, D.; Gao, Y.; Wei, Y.; Du, F.; Chen, G. ACS Appl. Mater. Interfaces 2016, 8, 31709. doi: 10.1021/acsami.6b11372  doi: 10.1021/acsami.6b11372

    69. [69]

      Serras, P.; Palomares, V.; Kubiak, P.; Lezama, L.; Rojo, T. Electrochem. Commun. 2013, 34, 344. doi: 10.1016/j.elecom.2013.07.010  doi: 10.1016/j.elecom.2013.07.010

    70. [70]

      Ali, B.; Ghafoor, F.; Shahzad, M. I.; Shah, S. K.; Abbas, S. M. J. Power Sources 2018, 396, 467. doi: 10.1016/j.jpowsour.2018.06.049  doi: 10.1016/j.jpowsour.2018.06.049

    71. [71]

      Pan, W.; Guan, W.; Liu, S.; Xu, B. B.; Liang, C.; Pan, H.; Yan, M.; Jiang, Y. J. Mater. Chem. A 2019, 7, 13197. doi: 10.1039/C9TA02188D  doi: 10.1039/C9TA02188D

    72. [72]

      Zhang, Y.; Xia, X.; Liu, B.; Deng, S.; Xie, D.; Liu, Q.; Wang, Y.; Wu, J.; Wang, X.; Tu, J. Adv. Energy Mater. 2019, 9, 1803342. doi: 10.1002/aenm.201803342  doi: 10.1002/aenm.201803342

    73. [73]

      Jung, Y. H.; Lim, C. H.; Kim, D. K. J. Mater. Chem. A 2013, 1, 11350. doi: 10.1039/c3ta12116j  doi: 10.1039/c3ta12116j

    74. [74]

      Zhang, J.; Yuan, T.; Wan, H.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. Sci. China Chem. 2017, 60, 1546. doi: 10.1007/s11426-017-9125-y  doi: 10.1007/s11426-017-9125-y

    75. [75]

      Li, S.; Dong, Y.; Xu, L.; Xu, X.; He, L.; Mai, L. Adv. Mater. 2014, 26, 3545. doi: 10.1002/adma.201305522  doi: 10.1002/adma.201305522

    76. [76]

      Xu, Y.; Wei, Q.; Xu, C.; Li, Q.; An, Q.; Zhang, P.; Sheng, J.; Zhou, L.; Mai, L. Adv. Energy Mater. 2016, 6, 1600389. doi: 10.1002/aenm.201600389  doi: 10.1002/aenm.201600389

    77. [77]

      An, Q.; Xiong, F.; Wei, Q.; Sheng, J.; He, L.; Ma, D.; Yao, Y.; Mai, L. Adv. Energy Mater. 2015, 5, 1401963. doi: 10.1002/aenm.201401963  doi: 10.1002/aenm.201401963

    78. [78]

      Fang, Y.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Adv. Mater. 2015, 27, 5895. doi: 10.1002/adma.201502018  doi: 10.1002/adma.201502018

    79. [79]

      Jiang, T.; Wei, Y.; Pan, W.; Li, Z.; Ming, X.; Chen, G.; Wang, C. J. Alloy. Compd. 2009, 488, L26. doi: 10.1016/j.jallcom.2009.08.134  doi: 10.1016/j.jallcom.2009.08.134

    80. [80]

      Ni, J.; Zhang, L.; Fu, S.; Savilov, S.; Aldoshin, S.; Lu, L. Carbon 2015, 92, 15. doi: 10.1016/j.carbon.2015.02.047  doi: 10.1016/j.carbon.2015.02.047

    81. [81]

      Li, Y. D.; Deng, Y. F.; Pan, Z. Y.; Wei, Y. P.; Zhao, S. X.; Gan, L. Acta Phys. -Chim. Sin. 2017, 33, 2293.  doi: 10.3866/PKU.WHXB201705294

    82. [82]

      Zhang, S.; Gu, H.; Pan, H.; Yang, S.; Du, W.; Li, X.; Gao, M.; Liu, Y.; Zhu, M.; Ouyang, L. Adv. Energy Mater. 2017, 7, 1601066. doi: 10.1002/aenm.201601066  doi: 10.1002/aenm.201601066

    83. [83]

      Zhang, S.; Chen, J.; Tang, T.; Jiang, Y.; Chen, G.; Shao, Q.; Yan, C.; Zhu, T.; Gao, M.; Liu, Y. J. Mater. Chem. A 2018, 6, 3610. doi: 10.1039/C7TA10887G  doi: 10.1039/C7TA10887G

  • 加载中
    1. [1]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    2. [2]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    3. [3]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    4. [4]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    5. [5]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    6. [6]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    7. [7]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    8. [8]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    9. [9]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    10. [10]

      Rui YangHui LiQingfei MengWenjie LiJiliang WuYongjin FangChi HuangYuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    13. [13]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    14. [14]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    15. [15]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    16. [16]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    17. [17]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    18. [18]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    19. [19]

      Siyu ZhangKunhong GuBing'an LuJunwei HanJiang Zhou . Hydrometallurgical Processes on Recycling of Spent Lithium-lon Battery Cathode: Advances and Applications in Sustainable Technologies. Acta Physico-Chimica Sinica, 2024, 40(10): 2309028-0. doi: 10.3866/PKU.WHXB202309028

    20. [20]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(73)
  • Abstract views(2454)
  • HTML views(803)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return