Citation: Xu Laiqiang, Li Jiayang, Liu Cheng, Zou Guoqiang, Hou Hongshuai, Ji Xiaobo. Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190501. doi: 10.3866/PKU.WHXB201905013 shu

Research Progress in Inorganic Solid-State Electrolytes for Sodium-Ion Batteries

  • Corresponding author: Ji Xiaobo, xji@csu.edu.cn
  • Received Date: 2 May 2019
    Revised Date: 3 June 2019
    Accepted Date: 1 July 2019
    Available Online: 4 May 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (51622406)the National Natural Science Foundation of China 51622406

  • Sodium batteries have drawn increasing attention from multiple researchers owing to the abundant reserves and low cost of sodium resources. However, traditional sodium batteries based on organic solvent electrolyte systems have safety risks. Thus, the utilization of solid electrolyte materials instead of organic electrolytes could effectively resolve safety issues and ensure the safe performance of the battery. Solid sodium-ion battery is a promising energy storage device. The sodium ion solid-state electrolytes mainly includes Na-β-Al2O3, Na super ionic conductor (NASICON), sulfide, polymer, and borohydride. Inorganic solid electrolytes have the advantage of ionic conductivity compared with polymer solid electrolyte. This paper summarizes the research progress on three common inorganic sodium ion solid electrolytes: Na-β-Al2O3, NASICON, and sulfide. Research efforts have mainly focused on increasing ionic conductivity and interface stability. Na-β-Al2O3 has been successfully commercialized in high-temperature Na-S and ZEBRA batteries with molten electrodes. Pure β″-Al2O3 is difficult to prepare owing to its low thermodynamic stability. The synthesized β″-Al2O3 based on traditional solid-state reaction generally contains impurities such as β-Al2O3 and NaAlO2 (around the boundaries). Further improvements are required to develop favorable methods for fabricating pure β″-Al2O3 with high production yield, low cost, and well-controlled microstructure. NASICON, one of the most promising ionic conductors for solid sodium-ion batteries, has attracted considerable attention for its high ionic conductivity at room temperature. The general method to enhance ionic conductivity is to increase the bottleneck size by introducing proper substituents. However, the substitution of synthetic elements could result in different optimal calcination temperatures, which would lead to a change in the density of ceramic sintering. β″-Al2O3 and NASICON have higher ionic conductivity at room temperature but cannot achieve good performance in the field of high power densities and long-term cycling owing to the poor interface contact with electrode materials. Because the high polarizability and large ionic radius of sulfur atoms weaken the interaction between skeleton and sodium ions, sulfide solid electrolytes often provide higher ionic conductivity at room temperature than analogous oxides. At the same time, sulfide solid electrolytes can be easily pressed into a mold at room temperature. However, sulfide electrolytes have low chemical stability in air because of hydrolysis by water molecules with the generation of H2S gas, which should be handled in inert gas atmosphere. In conclusion, this review discusses the recent progress in different aspects of ionic conductivity and interface stability.
  • 加载中
    1. [1]

      Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. Nature 2000, 407, 496. doi: 10.1038/35035045  doi: 10.1038/35035045

    2. [2]

      Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M. Nat. Mater. 2006, 5, 567. doi: 10.1038/nmat1672  doi: 10.1038/nmat1672

    3. [3]

      Nitta, N.; Wu, F.; Lee, J. T.; Yushin, G. Mater. Today 2015, 18, 252. doi: 10.1016/j.mattod.2014.10.040  doi: 10.1016/j.mattod.2014.10.040

    4. [4]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    5. [5]

      Schmuch, R.; Wagner, R.; Hörpel, G.; Placke, T.; Winter, M. Nat. Energy 2018, 3, 267. doi: 10.1038/s41560-018-0107-2  doi: 10.1038/s41560-018-0107-2

    6. [6]

      Zubi, G.; Dufo-López, R.; Carvalho, M.; Pasaoglu, G. Renewable Sustainable Energy Rev. 2018, 89, 292. doi: 10.1016/j.rser.2018.03.002  doi: 10.1016/j.rser.2018.03.002

    7. [7]

      Nayak, P. K.; Yang, L.; Brehm, W.; Adelhelm, P. Angew. Chem. Int. Ed. 2018, 57, 102. doi: 10.1002/anie.201703772  doi: 10.1002/anie.201703772

    8. [8]

      Wood Ⅲ, D. L.; Li, J.; Daniel, C. J. Power Sources 2015, 275, 234. doi: 10.1016/j.jpowsour.2014.11.019  doi: 10.1016/j.jpowsour.2014.11.019

    9. [9]

      Meister, P.; Jia, H.; Li, J.; Kloepsch, R.; Winter, M.; Placke, T. Chem. Mater. 2016, 28, 7203. doi: 10.1021/acs.chemmater.6b02895  doi: 10.1021/acs.chemmater.6b02895

    10. [10]

      Song, W. X.; Hou, H. S.; Ji, X. B. Acta Phys. -Chim. Sin. 2017, 33, 103.  doi: 10.3866/PKU.WHXB201608303

    11. [11]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. doi: 10.1021/cr500192f  doi: 10.1021/cr500192f

    12. [12]

      Kundu, D.; Talaie, E.; Duffort, V.; Nazar, L. F. Angew. Chem. Int. Ed. 2015, 54, 3431. doi: 10.1002/chin.201521309  doi: 10.1002/chin.201521309

    13. [13]

      Yang, Y. Q.; Chang, Z.; Li, M. X.; Wang, X. W.; Wu, Y. P. Solid State Ionics 2015, 269, 1. doi: 10.1016/j.ssi.2014.11.015  doi: 10.1016/j.ssi.2014.11.015

    14. [14]

      Hu, Z.; Liu, Q.; Chou, S. L.; Dou, S. X. Adv. Mater. 2017, 29, 1700606. doi: 10.1002/adma.201700606  doi: 10.1002/adma.201700606

    15. [15]

      Hou, H.; Banks, C. E.; Jing, M.; Zhang, Y.; Ji, X. B. Adv. Mater. 2015, 27, 7861. doi: 10.1002/adma.201503816  doi: 10.1002/adma.201503816

    16. [16]

      David, L.; Bhandavat, R.; Singh, G. ACS Nano 2014, 8, 1759. doi: 10.1021/nn406156b  doi: 10.1021/nn406156b

    17. [17]

      Jin, Y.; Sun, X.; Yu, Y.; Ding, C.; Chen, C.; Guan, Y. Prog. Chem. 2014, 26, 582.  doi: 10.7536/PC130914

    18. [18]

      http://newsxmwb.xinmin.cn/kechuang/2019/03/25/31506485.html (accessed June 29, 2019)

    19. [19]

      Huang, Y.; Zhao, L.; Li, L.; Xie, M.; Wu, F.; Chen, R. Adv. Mater. 2019, 31, 1808393. doi: 10.1002/adma.201808393  doi: 10.1002/adma.201808393

    20. [20]

      Ponrouch, A.; Dedryvère, R.; Monti, D.; Demet, A. E.; Mba, J. M. A.; Croguennec, L.; Masquelier, C.; Johansson, P.; Palacín, M. R. Energy Environ. Sci. 2013, 6, 2361. doi: 10.1039/c3ee41379a  doi: 10.1039/c3ee41379a

    21. [21]

      Monti, D.; Jónsson, E.; Palacín, M. R.; Johansson, P. J. Power Sources 2014, 245, 630. doi: 10.1016/j.jpowsour.2013.06.153  doi: 10.1016/j.jpowsour.2013.06.153

    22. [22]

      Ponrouch, A.; Marchante, E.; Courty, M.; Tarascon, J. M.; Palacin, M. R. Energy Environ. Sci. 2012, 5, 8572. doi: 10.1039/c2ee22258b  doi: 10.1039/c2ee22258b

    23. [23]

      Kim, J. K.; Lim, Y. J.; Kim, H.; Cho, G. B.; Kim, Y. Energy Environ. Sci. 2015, 8, 3589. doi: 10.1039/C5EE01941A  doi: 10.1039/C5EE01941A

    24. [24]

      Zhang, Z.; Zhang, Q.; Shi, J.; Chu, Y. S.; Yu, X.; Xu, K.; Ge, M.; Yan, H.; Li, W.; Gu, L. Adv. Energy Mater. 2017, 7, 1601196. doi: 10.1002/aenm.201601196  doi: 10.1002/aenm.201601196

    25. [25]

      Ma, Q.; Hu, Y.; Li, H.; Chen, L.; Huang, X.; Zhou, Z. Acta Phys. -Chim. Sin. 2018, 34, 213.  doi: 10.3866/PKU.WHXB201707172

    26. [26]

      Zhang, Q.; Liang, F.; Yao, Y.; Ma, W.; Yang, B.; Dai, Y. Prog. Chem. 2019, 31, 210.  doi: 10.7536/PC180434

    27. [27]

      Hou, W.; Guo, X.; Shen, X.; Amine, K.; Yu, H.; Lu, J. Nano Energy 2018, 52, 279. doi: 10.1016/j.nanoen.2018.07.036  doi: 10.1016/j.nanoen.2018.07.036

    28. [28]

      Gao, H.; Xin, S.; Xue, L.; Goodenough, J. B. Chemistry 2018, 4, 833. doi: 10.1016/j.chempr.2018.01.007  doi: 10.1016/j.chempr.2018.01.007

    29. [29]

      Zhou, W.; Li, Y.; Xin, S.; Goodenough, J. B. ACS Cent. Sci. 2017, 3, 52. doi: 10.1021/acscentsci.6b00321  doi: 10.1021/acscentsci.6b00321

    30. [30]

      Richards, W. D.; Miara, L. J.; Wang, Y.; Kim, J. C.; Ceder, G. Chem. Mater. 2015, 28, 266. doi: 10.1021/acs.chemmater.5b04082  doi: 10.1021/acs.chemmater.5b04082

    31. [31]

      Wenzel, S.; Leichtweiss, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. ACS Appl. Mater. Interfaces 2016, 8, 28216. doi: 10.1021/acsami.6b10119  doi: 10.1021/acsami.6b10119

    32. [32]

      Hueso, K. B.; Armand, M.; Rojo, T. Energy Environ. Sci. 2013, 6, 734. doi: 10.1039/C3EE24086J  doi: 10.1039/C3EE24086J

    33. [33]

      Lu, X.; Xia, G.; Lemmon, J. P.; Yang, Z. J. Power Sources 2010, 195, 2431. doi: 10.1016/j.jpowsour.2009.11.120  doi: 10.1016/j.jpowsour.2009.11.120

    34. [34]

      Chen, G.; Lu, J.; Li, L.; Chen, L.; Jiang, X. J. Alloys Compd. 2016, 673, 295. doi: 10.1016/j.jallcom.2016.03.009  doi: 10.1016/j.jallcom.2016.03.009

    35. [35]

      Xu, D.; Jiang, H.; Li, Y.; Li, L.; Li, M.; Hai, O. Eur. Phys. J. Appl. Phys. 2016, 74, 10901. doi: 10901.10.1051/epjap/2016150466  doi: 10.1051/epjap/2016150466

    36. [36]

      Park, J. H.; Kim, K. H.; Lim, S. K. J. Mater. Sci. 1998, 33, 5671. doi: 10.1023/A:100448880  doi: 10.1023/A:100448880

    37. [37]

      Lu, X. C.; Li, G. S.; Kim, J. Y.; Meinhardt, K. D.; Sprenkle, V. L. J. Power Sources 2015, 295, 167. doi: 10.1016/j.jpowsour.2015.06.147  doi: 10.1016/j.jpowsour.2015.06.147

    38. [38]

      Chen, G. Y.; Lu, J. C.; Zhou, X. H.; Chen, L. X.; Jiang, X. B. Ceram. Int. 2016, 42, 18055. doi: 10.1016/j.ceramint.2016.07.115  doi: 10.1016/j.ceramint.2016.07.115

    39. [39]

      Zhu, C. F.; Hong, Y. F.; Huang, P. J. Alloys Compd. 2016, 688, 746. doi: 10.1016/j.jallcom.2016.07.264  doi: 10.1016/j.jallcom.2016.07.264

    40. [40]

      Xu, D.; Jiang, H. Y.; Li, M.; Hai, O.; Zhang, Y. Ceram. Int. 2015, 41, 5355. doi: 10.1016/j.ceramint.2014.12.094  doi: 10.1016/j.ceramint.2014.12.094

    41. [41]

      Wang, M. C.; Hon, M. H.; Yen, F. S. J. Cryst. Growth 1987, 84, 638. doi: 10.1016/0022-0248(87)90055-8  doi: 10.1016/0022-0248(87)90055-8

    42. [42]

      Lange, F. F.; Miller, K. T. J. Am. Ceram. Soc. 1987, 12, 896. doi: 10.1111/j.1151-2916.1987.tb04913.x  doi: 10.1111/j.1151-2916.1987.tb04913.x

    43. [43]

      Wei, X.; Cao, Y.; Lu, L.; Yang, H.; Shen, X. J. Alloys Compd. 2011, 509, 6222. doi: 10.1016/j.jallcom.2011.03.0  doi: 10.1016/j.jallcom.2011.03.0

    44. [44]

      Takahashi, T.; Kuwabara, K. J. Appl. Electrochem. 1980, 10, 291. doi:10.1007/BF00617203  doi: 10.1007/BF00617203

    45. [45]

      Chi, C.; Katsui, H.; Goto, T. Ceram. Int. 2017, 43, 1278. doi: 10.1016/j.ceramint.2016.10.077  doi: 10.1016/j.ceramint.2016.10.077

    46. [46]

      Yamaguchi, S.; Terabe, K.; Iguchi, Y.; Imai, A. Solid State Ionics 1987, 25, 171. doi: 10.1016/0167-2738(87)90117-2  doi: 10.1016/0167-2738(87)90117-2

    47. [47]

      Pekarsky, A.; Nicholson, P. S. Mater. Res. Bull. 1980, 15, 1517. doi: 10.1016/0025-5408(80)90111-7  doi: 10.1016/0025-5408(80)90111-7

    48. [48]

      Park, H. C.; Lee, Y. B.; Lee, S. G.; Lee, C. H.; Kim, J. K.; Hong, S. S.; Park, S. S. Ceram. Int. 2005, 31, 293. doi: 10.1016/j.ceramint.2004.05.019  doi: 10.1016/j.ceramint.2004.05.019

    49. [49]

      Yi, E.; Temeche, E.; Laine, R. M. J. Mater. Chem. A 2018, 6, 12411. doi: 10.1039/C8TA02907E  doi: 10.1039/C8TA02907E

    50. [50]

      Goodenough, J.; Hong, H. P.; Kafalas, J. Mater. Res. Bull. 1976, 11, 203. doi: 10.1016/0025-5408(76)90077-5  doi: 10.1016/0025-5408(76)90077-5

    51. [51]

      Chen, M.; Hua, W.; Xiao, J.; Cortie, D.; Chen, W.; Wang, E.; Hu, Z.; Gu, Q.; Wang, X.; Indris, S. Nat. Commun. 2019, 10, 1480. doi: 10.1038/s41467-019-09170-5  doi: 10.1038/s41467-019-09170-5

    52. [52]

      Zhao, C.; Liu, L.; Qi, X.; Lu, Y.; Wu, F.; Zhao, J.; Yu, Y.; Hu, Y. S.; Chen, L. Adv. Energy Mater. 2018, 8, 1704012. doi: 1703012.10.1002/aenm.201703012

    53. [53]

      Boilot, J.; Collin, G.; Colomban, P. Mater. Res. Bull. 1987, 22, 669. doi: 10.1016/0025-5408(87)90116-4  doi: 10.1016/0025-5408(87)90116-4

    54. [54]

      Zhu, Y. S.; Li, L. L.; Li, C. Y.; Zhou, L.; Wu, Y. P. Solid State Ionics 2016, 289, 113. doi: 10.1016/j.ssi.2016.02.021  doi: 10.1016/j.ssi.2016.02.021

    55. [55]

      Shao, Y.; Zhong, G.; Lu, Y.; Liu, L.; Zhao, C.; Zhang, Q.; Hu, Y. S.; Yang, Y.; Chen, L. Energy Storage Mater. 2019. doi: 10.1016/j.ensm.2019.04.009  doi: 10.1016/j.ensm.2019.04.009

    56. [56]

      Imanaka, N.; Kuwabara, S.; Adachi, G. Y.; Shiokawa, J. Solid State Ionics 1987, 23, 15. doi: 10.1016/0167-2738(87)90076-2  doi: 10.1016/0167-2738(87)90076-2

    57. [57]

      Agrawal, D. K. Trans. Indian Ceram. Soc. 1996, 55, 1. doi: 10.1080/0371750X.1996.10804741  doi: 10.1080/0371750X.1996.10804741

    58. [58]

      Aono, H.; Sugimoto, E.; Sadaoka, Y.; Imanaka, N.; Adachi, G. Y. Solid State Ionics 1991, 47, 257. doi: 10.1016/0167-2738(91)90247-9  doi: 10.1016/0167-2738(91)90247-9

    59. [59]

      Zhang, Z. Z.; Zhang, Q. H.; Shi, J. A.; Chu, Y. S.; Yu, X. Q.; Xu, K. Q.; Ge, M. Y.; Yan, H. F.; Li, W. J.; Gu, L.; et al. Adv. Energy Mater. 2016, 7, 1601196. doi: 10.1002/aenm.201601196  doi: 10.1002/aenm.201601196

    60. [60]

      Deng, Y.; Eames, C.; Nguyen, L. H.; Pecher, O.; Griffith, K. J.; Courty, M.; Fleutot, B.; Chotard, J. N.; Grey, C. P.; Islam, M. S. Chem. Mater. 2018, 30, 2618. doi: 10.1021/acs.chemmater.7b05237  doi: 10.1021/acs.chemmater.7b05237

    61. [61]

      Samiee, M.; Radhakrishnan, B.; Rice, Z.; Deng, Z.; Meng, Y. S.; Ong, S. P.; Luo, J. J. Power Sources 2017, 347, 229. doi: 10.1016/j.jpowsour.2017.02.04  doi: 10.1016/j.jpowsour.2017.02.04

    62. [62]

      Tatsumisago, M.; Hayashi, A. Int. J. Appl. Glass Sci. 2014, 5, 226. doi: 10.1111/ijag.12084  doi: 10.1111/ijag.12084

    63. [63]

      Hayashi, A.; Noi, K.; Sakuda, A.; Tatsumisago, M. Nat. Commun. 2012, 3, 856. doi: 10.1038/ncomms1843  doi: 10.1038/ncomms1843

    64. [64]

      Hu, P.; Zhang, Y.; Chi, X.; Kumar Rao, K.; Hao, F.; Dong, H.; Guo, F.; Ren, Y.; Grabow, L. C.; Yao, Y. ACS Appl. Mater. Interfaces 2019, 11, 9672. doi: 10.1021/acsami.8b19984  doi: 10.1021/acsami.8b19984

    65. [65]

      Yue, J.; Zhu, X.; Han, F.; Fan, X.; Wang, L.; Yang, J.; Wang, C. ACS Appl. Mater. Interfaces 2018, 10, 39645. doi: 10.1021/acsami.8b12610  doi: 10.1021/acsami.8b12610

    66. [66]

      Takeuchi, S.; Suzuki, K.; Hirayama, M.; Kanno, R. J. Solid State Chem. 2018, 265, 353. doi: 10.1016/j.jssc.2018.06.023  doi: 10.1016/j.jssc.2018.06.023

    67. [67]

      Dive, A.; Benmore, C.; Wilding, M.; Martin, S. W.; Beckman, S.; Banerjee, S. J. Phys. Chem. B 2018, 122, 7597. doi: 10.1021/acs.jpcb.8b04353  doi: 10.1021/acs.jpcb.8b04353

    68. [68]

      Wu, E. A.; Kompella, C. S.; Zhu, Z.; Lee, J. Z.; Lee, S. C.; Chu, I. H.; Nguyen, H.; Ong, S. P.; Banerjee, A.; Meng, Y. S. ACS Appl. Mater. Interfaces 2018, 10, 10076. doi: 10.1021/acsami.7b19037  doi: 10.1021/acsami.7b19037

    69. [69]

      Wan, H.; Mwizerwa, J. P.; Qi, X.; Liu, X.; Xu, X.; Li, H.; Hu, Y. S.; Yao, X. ACS Nano 2018, 12, 2809. doi: 10.1021/acsnano.8b00073  doi: 10.1021/acsnano.8b00073

    70. [70]

      Chi, X.; Liang, Y.; Hao, F.; Zhang, Y.; Whiteley, J.; Dong, H.; Hu, P.; Lee, S.; Yao, Y. Angew. Chem. Int. Ed. 2018, 57, 2630. doi: 10.1002/anie.201712895  doi: 10.1002/anie.201712895

    71. [71]

      Shang, S. L.; Wang, Y.; Anderson, T. J.; Liu, Z. K. Phys. Rev. Mater. 2019, 3, 015401. doi: 10.1103/PhysRevMaterials.3.015401  doi: 10.1103/PhysRevMaterials.3.015401

    72. [72]

      Moon, C. K.; Lee, H. J.; Park, K. H.; Kwak, H.; Heo, J. W.; Choi, K.; Yang, H.; Kim, M. S.; Hong, S. T.; Lee, J. H. ACS Energy Lett. 2018, 3, 2504. doi: 10.1021/acsenergylett.8b01479  doi: 10.1021/acsenergylett.8b01479

    73. [73]

      Huang, H.; Wu, H. H.; Wang, X.; Huang, B.; Zhang, T. Y. Phys. Chem. Chem. Phys. 2018, 20, 20525. doi: 10.1039/C8CP02383B  doi: 10.1039/C8CP02383B

    74. [74]

      Uematsu, M.; Yubuchi, S.; Noi, K.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. Solid State Ionics 2018, 320, 33. doi: 10.1016/j.ssi.2017.12.021  doi: 10.1016/j.ssi.2017.12.021

    75. [75]

      Noi, K.; Nagata, Y.; Hakari, T.; Suzuki, K.; Yubuchi, S.; Ito, Y.; Sakuda, A.; Hayashi, A.; Tatsumisago, M. ACS Appl. Mater. Interfaces 2018, 10, 19605. doi: 10.1021/acsami.8b02427  doi: 10.1021/acsami.8b02427

    76. [76]

      Tang, H.; Deng, Z.; Lin, Z.; Wang, Z.; Chu, I. H.; Chen, C.; Zhu, Z.; Zheng, C.; Ong, S. P. Chem. Mater. 2017, 30, 163. doi: 10.1021/acs.chemmater.7b04096  doi: 10.1021/acs.chemmater.7b04096

    77. [77]

      Zhang, D.; Cao, X.; Xu, D.; Wang, N.; Yu, C.; Hu, W.; Yan, X.; Mi, J.; Wen, B.; Wang, L. Electrochim. Acta 2018, 259, 100. doi: 10.1016/j.electacta.2017.10.173  doi: 10.1016/j.electacta.2017.10.173

    78. [78]

      Tanibata, N.; Noi, K.; Hayashi, A.; Tatsumisago, M. Solid State Ionics 2018, 320, 193. doi: 10.1016/j.ssi.2018.02.042  doi: 10.1016/j.ssi.2018.02.042

    79. [79]

      Jansen, M.; Henseler, U. J. Solid State Chem. 1992, 99, 110. doi: 10.1016/0022-4596(92)90295-7  doi: 10.1016/0022-4596(92)90295-7

    80. [80]

      Berbano, S. S.; Seo, I.; Bischoff, C. M.; Schuller, K. E.; Martin, S. W. J. Non-Cryst. Solids 2012, 358, 93. doi: 10.1016/j.jnoncrysol.2011.08.030  doi: 10.1016/j.jnoncrysol.2011.08.030

    81. [81]

      Krauskopf, T.; Culver, S. P.; Zeier, W. G. Inorg. Chem. 2018, 57, 4739. doi: 10.1021/acs.inorgchem.8b00458  doi: 10.1021/acs.inorgchem.8b00458

    82. [82]

      Yu, Z.; Shang, S. L.; Seo, J. H.; Wang, D.; Luo, X.; Huang, Q.; Chen, S.; Lu, J.; Li, X.; Liu, Z. K. Adv. Mater. 2017, 29, 1605561. doi: 10.1002/adma.201605561  doi: 10.1002/adma.201605561

    83. [83]

      Yu, Z.; Shang, S. L.; Wang, D.; Li, Y. C.; Yennawar, H. P.; Li, G.; Huang, H. T.; Gao, Y.; Mallouk, T. E.; Liu, Z. K. Energy Storage Mater. 2019, 17, 70. doi: 10.1016/j.ensm.2018.11.027  doi: 10.1016/j.ensm.2018.11.027

    84. [84]

      Kim, S. K.; Mao, A.; Sen, S.; Kim, S. Chem. Mater. 2014, 26, 5695. doi: 10.1021/cm502542p  doi: 10.1021/cm502542p

    85. [85]

      Wang, H.; Chen, Y.; Hood, Z. D.; Sahu, G.; Pandian, A. S.; Keum, J. K.; An, K.; Liang, C. Angew. Chem. Int. Ed. 2016, 55, 8551. doi: 10.1002/anie.201601546  doi: 10.1002/anie.201601546

    86. [86]

      Shang, S. L.; Yu, Z.; Wang, Y.; Wang, D.; Liu, Z. K. ACS Appl. Mater. Interfaces 2017, 9, 16261. doi: 10.1021/acsami.7b03606  doi: 10.1021/acsami.7b03606

    87. [87]

      Kim, T. W.; Park, K. H.; Choi, Y. E.; Lee, J. Y.; Jung, Y. S. J. Mater. Chem. A 2018, 6, 840. doi: 10.1039/C7TA09242C  doi: 10.1039/C7TA09242C

    88. [88]

      Zhang, L.; Yang, K.; Mi, J.; Lu, L.; Zhao, L.; Wang, L.; Li, Y.; Zeng, H. Adv. Energy Mater. 2015, 5, 1501294. doi: 10.1002/aenm.201501294  doi: 10.1002/aenm.201501294

    89. [89]

      Kim, J. J.; Yoon, K.; Park, I.; Kang, K. Small Methods 2017, 1, 1700219. doi: 10.1002/smtd.201700219  doi: 10.1002/smtd.201700219

    90. [90]

      Tian, Y.; Sun, Y.; Hannah, D. C.; Xiao, Y.; Liu, H.; Chapman, K. W.; Bo, S. H.; Ceder, G. Joule 2019, 3, 17. doi: 10.1016/j.joule.2018.12.019  doi: 10.1016/j.joule.2018.12.019

  • 加载中
    1. [1]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    2. [2]

      Weiguang Zhao . 化学实验室常见安全事故应急处置的思考与建议. University Chemistry, 2025, 40(8): 291-297. doi: 10.12461/PKU.DXHX202410053

    3. [3]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    4. [4]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    5. [5]

      Junke LIUKungui ZHENGWenjing SUNGaoyang BAIGuodong BAIZuwei YINYao ZHOUJuntao LI . Preparation of modified high-nickel layered cathode with LiAlO2/cyclopolyacrylonitrile dual-functional coating. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1461-1473. doi: 10.11862/CJIC.20240189

    6. [6]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    7. [7]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    10. [10]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    11. [11]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    12. [12]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    13. [13]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    14. [14]

      Jiandong LiuXin LiDaxiong WuHuaping WangJunda HuangJianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039

    15. [15]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    16. [16]

      Aoyu HuangJun XuYu HuangGui ChuMao WangLili WangYongqi SunZhen JiangXiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007

    17. [17]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    18. [18]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    19. [19]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    20. [20]

      Mingyang MenJinghua WuGaozhan LiuJing ZhangNini ZhangXiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019

Metrics
  • PDF Downloads(54)
  • Abstract views(1457)
  • HTML views(294)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return