Citation: Zeng Guifang, Liu Yining, Gu Chunyan, Zhang Kai, An Yongling, Wei Chuanliang, Feng Jinkui, Ni Jiangfeng. A Nonflammable Fluorinated Carbonate Electrolyte for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190500. doi: 10.3866/PKU.WHXB201905006 shu

A Nonflammable Fluorinated Carbonate Electrolyte for Sodium-Ion Batteries

  • Corresponding author: Feng Jinkui, jinkui@sdu.edu.cn Ni Jiangfeng, jjeffni@suda.edu.cn
  • Received Date: 2 May 2019
    Revised Date: 6 June 2019
    Accepted Date: 25 June 2019
    Available Online: 28 May 2019

    Fund Project: the Young Scholars Program of Shandong University, China 2016WLJH03the Project of the Taishan Scholar, China tsqn201812002the Shandong Provincial Natural Science Foundation, China ZR2017MB001the Shandong Provincial Science and Technology Key Project, China 2018GGX104002the National Natural Science Foundation of China 61633015the Project of the Taishan Scholar, China ts201511004The project was supported by the Shandong Provincial Natural Science Foundation, China (ZR2017MB001), the Shandong Provincial Science and Technology Key Project, China (2018GGX104002), the National Natural Science Foundation of China (61633015), the Young Scholars Program of Shandong University, China (2016WLJH03) and the Project of the Taishan Scholar, China (tsqn201812002, ts201511004)

  • Lithium-ion batteries (LIBs) are widely used in cellphones, laptops, and electric cars owing to their high energy density and long operational lifetime. However, their further deployment in large-scale energy storage systems is restricted by the uneven distribution of lithium resources (~0.0017% (mass fraction, w) in the Earth's crust). Therefore, alternative energy storage systems composed of abundant elements are of urgent need. Recently, sodium-ion batteries (SIBs) have attracted significant attention and are considered to be a potential alternative for next-generation batteries owing to abundant sodium resources (~2.64% (w) of the Earth's crust), suitable potential (−2.71 V), and low cost. SIBs are similar to LIBs in terms of their physical and electrochemical properties. Previous studies have mainly focused on SIB storage materials, including hard carbon, alloys, and hexacyanoferrate, while the safety of SIBs remains largely unexplored. Similar to LIBs, the current electrolytes used in SIBs are mainly composed of flammable organic carbonate solvents (or ether solvents), sodium salts, and functional additives, which pose possible safety issues. Moreover, the chemical activity of sodium is much higher than that of lithium, leading to a higher risk of fire, thermal runaway, and explosion. To overcome this problem, herein we propose a fluorinated non-flammable electrolyte composed of 0.9 mol∙L−1 NaPF6 (sodium hexafluorophosphate) in an intermixture of di-(2, 2, 2 trifluoroethyl) carbonate (TFEC) and fluoroethylene carbonate (FEC) in a 7 : 3 ratio by volume. Its physical and electrochemical properties were studied by ionic conductivity, direct ignition, cyclic voltammetry, and charge/discharge measurements, demonstrating excellent flame-retarding ability and outstanding compatibility with sodium electrodes. The electrochemical tests showed that the Prussian blue cathode retained a capacity of 84 mAh∙g−1 over 50 cycles in the prepared electrolyte, in contrast to the rapid capacity degradation in a flammable conventional carbonate electrolyte (74 mAh∙g−1 with 57% capacity retention after 50 cycles). To test the practical application of the proposed electrolyte, a hard carbon anode was used and exhibited exceptional performance in this system. The enhancement mechanism was further verified by Fourier transform infrared (FTIR), X-ray diffraction (XRD), and scanning emission microscopy (SEM) investigations. Polycarbonate on the surface of the cathode played an important role for the studied electrolyte system. The polycarbonate may originate from FEC decomposition, which can enhance the ionic conductivity of the solid electrolyte interface (SEI) layer and reduce impedance. Hence, we believe that this proposed electrolyte may provide new opportunities for the design of robust and safe SIBs for next-generation applications.
  • 加载中
    1. [1]

      Feng, J.; An, Y.; Ci, L.; Xiong, S. J. Mater. Chem. A 2015, 3, 14539. doi: 10.1039/c5ta03548a  doi: 10.1039/c5ta03548a

    2. [2]

      Sun, Y.; Shi, P.; Xiang, H.; Liang, X.; Yu, Y. Small 2019, 15, e1805479. doi: 10.1002/smll.201805479  doi: 10.1002/smll.201805479

    3. [3]

      Zeng, G.; An, Y.; Fei, H.; Yuan, T.; Qing, S.; Ci, L.; Xiong, S.; Feng, J. Funct. Mater. Lett. 2018, 11, 1840003. doi: 10.1142/s1793604718400039  doi: 10.1142/s1793604718400039

    4. [4]

      Wu, Y.; Yu, Y. Energy Storage Mater. 2019, 16, 323. doi: 10.1016/j.ensm.2018.05.026  doi: 10.1016/j.ensm.2018.05.026

    5. [5]

      Liu, X.; Jiang, X.; Zeng, Z.; Ai, X.; Yang, H.; Zhong, F.; Xia, Y.; Cao, Y. ACS Appl. Mater. Interfaces 2018, 10, 38141. doi: 10.1021/acsami.8b16129  doi: 10.1021/acsami.8b16129

    6. [6]

      Zeng, Z.; Jiang, X.; Li, R.; Yuan, D.; Ai, X.; Yang, H.; Cao, Y. Adv. Sci. 2016, 3, 1600066. doi: 10.1002/advs.201600066  doi: 10.1002/advs.201600066

    7. [7]

      Feng, J.; Zhang, Z.; Li, L.; Yang, J.; Xiong, S.; Qian, Y. J. Power Sources 2015, 284, 222. doi: 10.1016/j.jpowsour.2015.03.038  doi: 10.1016/j.jpowsour.2015.03.038

    8. [8]

      Zeng, Z.; Murugesan, V.; Han, K. S.; Jiang, X.; Cao, Y.; Xiao, L.; Ai, X.; Yang, H.; Zhang, J. G.; Sushko, M. L.; Liu, J. Nat. Energy 2018, 3, 674. doi: 10.1038/s41560-018-0196-y  doi: 10.1038/s41560-018-0196-y

    9. [9]

      Jiang, X.; Liu, X.; Zeng, Z.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. iScience 2018, 10, 114. doi: 10.1016/j.isci.2018.11.020  doi: 10.1016/j.isci.2018.11.020

    10. [10]

      Jiang, X.; Liu, X.; Zeng, Z.; Xiao, L.; Ai, X.; Yang, H.; Cao, Y. Adv. Energy Mater. 2018, 8, 1802176. doi: 10.1002/aenm.201802176  doi: 10.1002/aenm.201802176

    11. [11]

      Xia, J.; Nie, M.; Burns, J. C.; Xiao, A.; Lamanna, W. M.; Dahn, J. R. J. Power Sources 2016, 307, 340. doi: 10.1016/j.jpowsour.2015.12.132  doi: 10.1016/j.jpowsour.2015.12.132

    12. [12]

      Pham, H. Q.; Lee, H. Y.; Hwang, E. H.; Kwon, Y. G.; Song, S. W. J. Power Sources 2018, 404, 13. doi: 10.1016/j.jpowsour.2018.09.075  doi: 10.1016/j.jpowsour.2018.09.075

    13. [13]

      Jung, R.; Metzger, M.; Haering, D.; Solchenbach, S.; Marino, C.; Tsiouvaras, N.; Stinner, C.; Gasteiger, H. A. J. Electrochem. Soc. 2016, 163, A1705. doi: 10.1149/2.0951608jes  doi: 10.1149/2.0951608jes

    14. [14]

      Glazier, S. L.; Downie, L. E.; Xia, J.; Louli, A. J.; Dahn, J. R. J. Electrochem. Soc. 2016, 163, A2131. doi: 10.1149/2.0081610jes  doi: 10.1149/2.0081610jes

    15. [15]

      Zhang, Z.; Hu, L.; Wu, H.; Weng, W.; Koh, M.; Redfern, P. C.; Curtiss, L. A.; Amine, K. Energy Environ. Sci. 2013, 6, 1806. doi: 10.1039/c3ee24414h  doi: 10.1039/c3ee24414h

    16. [16]

      Irisarri, E.; Ponrouch, A.; Palacin, M. R. J. Electrochem. Soc. 2015, 162, A2476. doi: 10.1149/2.0091514jes  doi: 10.1149/2.0091514jes

    17. [17]

      Zheng, J.; Ji, G.; Fan, X.; Chen, J.; Li, Q.; Wang, H.; Yang, Y.; DeMella, K. C.; Raghavan, S. R.; Wang, C. Adv. Energy Mater. 2019, 1803774. doi: 10.1002/aenm.201803774  doi: 10.1002/aenm.201803774

    18. [18]

      Zeng, G.; Xiong, S.; Qian, Y.; Ci, L.; Feng, J. J. Electrochem. Soc. 2019, 166, A1217. doi: 10.1149/2.1171906jes  doi: 10.1149/2.1171906jes

    19. [19]

      Sun, H.; Sun, H.; Wang, W.; Jiao, H.; Jiao, S. RSC Adv. 2014, 4, 42991. doi: 10.1039/c4ra07531e  doi: 10.1039/c4ra07531e

    20. [20]

      Li, Y.; Hu, Y. S.; Titirici, M. M.; Chen, L.; Huang, X. A. Adv. Energy Mater. 2016, 6, 1600659. doi: 10.1002/aenm.201600659  doi: 10.1002/aenm.201600659

    21. [21]

      Markevich, E.; Salitra, G.; Fridman, K.; Sharabi, R.; Gershinsky, G.; Garsuch, A.; Semrau, G.; Schmidt, M. A.; Aurbach, D. Langmuir 2014, 30, 7414. doi: 10.1021/la501368y  doi: 10.1021/la501368y

    22. [22]

      Hu, L.; Zhang, Z.; Amine, K. Electrochem. Commun. 2013, 35, 76. doi: 10.1016/j.elecom.2013.08.009  doi: 10.1016/j.elecom.2013.08.009

    23. [23]

      Eshetu, G. G.; Martinez-Ibanez, M.; Sanchez-Diez, E.; Gracia, I.; Li, C.; Rodriguez-Martinez, L. M.; Rojo, T.; Zhang, H.; Armand, M. Chem. Asian J. 2018, 13, 2770. doi: 10.1002/asia.201800839  doi: 10.1002/asia.201800839

    24. [24]

      Chen, L.; Wang, K.; Xie, X.; Xie, J. Electrochem. Solid-State Lett. 2006, 9, A512. doi: 10.1149/1.2338771  doi: 10.1149/1.2338771

    25. [25]

      Cheng, Z.; Mao, Y.; Dong, Q.; Feng, J.; Shen, Y.; Chen, L. Acta Phys. -Chim. Sin. 2019, 35, 868.  doi: 10.3866/PKU.WHXB201811033

    26. [26]

      Liu, Z. Acta Phys. -Chim. Sin. 2019, 35, 804.  doi: 10.3866/PKU.WHXB201903013

  • 加载中
    1. [1]

      Guihuang FangWei ChenHongwei YangHaisheng FangChuang YuMaoxiang Wu . Improved performance of LiMn0.8Fe0.2PO4 by addition of fluoroethylene carbonate electrolyte additive. Chinese Chemical Letters, 2024, 35(6): 108799-. doi: 10.1016/j.cclet.2023.108799

    2. [2]

      Zhijia ZhangShihao SunYuefang ChenYanhao WeiMengmeng ZhangChunsheng LiYan SunShaofei ZhangYong Jiang . Epitaxial growth of Cu2-xSe on Cu (220) crystal plane as high property anode for sodium storage. Chinese Chemical Letters, 2024, 35(7): 108922-. doi: 10.1016/j.cclet.2023.108922

    3. [3]

      Tao LongPeng ChenBin FengCaili YangKairong WangYulei WangCan ChenYaping WangRuotong LiMeng WuMinhuan LanWei Kong PangJian-Fang WuYuan-Li Ding . Reinforced concrete-like Na3.5V1.5Mn0.5(PO4)3@graphene hybrids with hierarchical porosity as durable and high-rate sodium-ion battery cathode. Chinese Chemical Letters, 2024, 35(4): 109267-. doi: 10.1016/j.cclet.2023.109267

    4. [4]

      Fan WuShaoyang WuXin YeYurong RenPeng Wei . Research progress of high-entropy cathode materials for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(4): 109851-. doi: 10.1016/j.cclet.2024.109851

    5. [5]

      Bin FengTao LongRuotong LiYuan-Li Ding . Rationally constructing metallic Sn-ZnO heterostructure via in-situ Mn doping for high-rate Na-ion batteries. Chinese Chemical Letters, 2025, 36(2): 110273-. doi: 10.1016/j.cclet.2024.110273

    6. [6]

      Kunyao PengXianbin WangXingbin Yan . Converting LiNO3 additive to single nitrogenous component Li2N2O2 SEI layer on Li metal anode in carbonate-based electrolyte. Chinese Chemical Letters, 2024, 35(9): 109274-. doi: 10.1016/j.cclet.2023.109274

    7. [7]

      Xuan WangPeng SunSiteng YuanLu YueYufeng Zhao . P2-type low-cost and moisture-stable cathode for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(5): 110015-. doi: 10.1016/j.cclet.2024.110015

    8. [8]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    9. [9]

      Ruofan YinZhaoxin GuoRui LiuXian-Sen Tao . Ultrafast synthesis of Na3V2(PO4)3 cathode for high performance sodium-ion batteries. Chinese Chemical Letters, 2025, 36(2): 109643-. doi: 10.1016/j.cclet.2024.109643

    10. [10]

      Jiaojiao LiangYouming PengZhichao XuYufei WangMenglong LiuXin LiuDi HuangYuehua WeiZengxi Wei . Boron/phosphorus co-doped nitrogen-rich carbon nanofiber with flexible anode for robust sodium-ion battery. Chinese Chemical Letters, 2025, 36(1): 110452-. doi: 10.1016/j.cclet.2024.110452

    11. [11]

      Zhenjie YangChenyang HuXuan PangXuesi Chen . Sequence design in terpolymerization of ε-caprolactone, CO2 and cyclohexane oxide: Random ester-carbonate distributions lead to large-span tunability. Chinese Chemical Letters, 2024, 35(5): 109340-. doi: 10.1016/j.cclet.2023.109340

    12. [12]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    13. [13]

      Xinyu LiuJialin YangZonglin HeJiaoyan AiLina SongBaohua Liu . Linear polyurethanes with excellent comprehensive properties from poly(ethylene carbonate) diol. Chinese Chemical Letters, 2025, 36(1): 110236-. doi: 10.1016/j.cclet.2024.110236

    14. [14]

      Shengyu ZhaoQinhao ShiWuliang FengYang LiuXinxin YangXingli ZouXionggang LuYufeng Zhao . Suppression of multistep phase transitions of O3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(5): 108606-. doi: 10.1016/j.cclet.2023.108606

    15. [15]

      Xiping DongXuan WangZhixiu LuQinhao ShiZhengyi YangXuan YuWuliang FengXingli ZouYang LiuYufeng Zhao . Construction of Cu-Zn Co-doped layered materials for sodium-ion batteries with high cycle stability. Chinese Chemical Letters, 2024, 35(5): 108605-. doi: 10.1016/j.cclet.2023.108605

    16. [16]

      Shengyu ZhaoXuan YuYufeng Zhao . A water-stable high-voltage P3-type cathode for sodium-ion batteries. Chinese Chemical Letters, 2024, 35(9): 109933-. doi: 10.1016/j.cclet.2024.109933

    17. [17]

      Xingang KongYabei SuCuijuan XingWeijie ChengJianfeng HuangLifeng ZhangHaibo OuyangQi Feng . Facile synthesis of porous TiO2/SnO2 nanocomposite as lithium ion battery anode with enhanced cycling stability via nanoconfinement effect. Chinese Chemical Letters, 2024, 35(11): 109428-. doi: 10.1016/j.cclet.2023.109428

    18. [18]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    19. [19]

      Binyang QinMengqi WangShimei WuYining LiChilin LiuYufei ZhangHaosen Fan . Carbon dots confined nanosheets assembled NiCo2S4@CDs cross-stacked architecture for enhanced sodium ion storage. Chinese Chemical Letters, 2024, 35(7): 108921-. doi: 10.1016/j.cclet.2023.108921

    20. [20]

      Fanjun KongYixin GeShi TaoZhengqiu YuanChen LuZhida HanLianghao YuBin Qian . Engineering and understanding SnS0.5Se0.5@N/S/Se triple-doped carbon nanofibers for enhanced sodium-ion batteries. Chinese Chemical Letters, 2024, 35(4): 108552-. doi: 10.1016/j.cclet.2023.108552

Metrics
  • PDF Downloads(39)
  • Abstract views(1344)
  • HTML views(274)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return