Citation: Zhao Pan, Yang Bingjun, Chen Jiangtao, Lang Junwei, Zhang Tianyun, Yan Xingbin. A Safe, High-Performance, and Long-Cycle Life Zinc-Ion Hybrid Capacitor Based on Three-Dimensional Porous Activated Carbon[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190405. doi: 10.3866/PKU.WHXB201904050 shu

A Safe, High-Performance, and Long-Cycle Life Zinc-Ion Hybrid Capacitor Based on Three-Dimensional Porous Activated Carbon

  • Corresponding author: Yang Bingjun, xbyan@licp.cas.cn Yan Xingbin, yangbj@licp.cas.cn
  • Received Date: 11 April 2019
    Revised Date: 6 May 2019
    Accepted Date: 15 May 2019
    Available Online: 27 February 2019

    Fund Project: the National Natural Science Foundation of China 21573265The project was supported by the National Natural Science Foundation of China (21573265, 21673263, 21805291)the National Natural Science Foundation of China 21805291the National Natural Science Foundation of China 21673263

  • The rapid development of electronic products has increased the demand for safe, low-cost, and high-performance energy storage devices. Lithium-ion batteries have been commercialized owing to their high energy density. However, the limited lithium resources and their uneven distribution have triggered the search for alternative energy storage systems. In this context, rechargeable aqueous zinc-ion batteries have gained immense attention owing to their low cost and environmental friendliness. Nevertheless, it is highly challenging to develop zinc-ion battery cathode materials with both high capacity and long cycle life. Hence, in this study, we prepared three-dimensional porous activated carbon (3DAC) with high specific surface area by using ethylenediaminetetraacetic acid (EDTA) tetrasodium salt hydrate as the raw material. We developed a zinc-ion hybrid capacitor (ZIHC) in 1 mol∙L−1 ZnSO4 using 3DAC as the cathode and a zinc foil as the anode. The ZIHC stored charge by the reversible deposition/dissolution of Zn2+ on the zinc anode and rapid reversible adsorption/desorption of ions on the 3DAC cathode. Owing to the large specific surface area and highly porous structure of the 3DAC cathode, the assembled ZIHC exhibited excellent electrochemical performance. It worked well over the voltage range of 0.1–1.7 V, providing a high specific capacitance of 213 mAh·g−1 at the current density of 0.5 A·g−1 (the highest value reported till date). The ZIHC showed specific capacities of 182, 160, 139, 130, 127, 122, and 116 mAh·g−1 at the current densities of 1, 2, 4, 6, 8, 10, and 20 A·g−1, respectively. Meanwhile, it exhibited the highest energy density of 164 Wh·kg−1 (at a power density of 390 W·kg−1) and still delivered the highest power density of 9.3 kW·kg−1 with a high energy density of 74 Wh·kg−1. In addition, our ZIHC also exhibited excellent cycling stability. After 20000 cycles at 10 A·g−1, it retained 90% of its initial capacity and exhibited high Coulombic efficiency (≈100%). In order to investigate the causes of capacity decay, we examined the cycled zinc foil by scanning electron microscopy and X-ray diffraction. The results showed that a large number of Zn4SO4(OH)6⋅3H2O disordered dendrites were formed on the surface of the zinc foil. These dendrites inhibited the reversible deposition/dissolution of zinc ions, resulting in the capacity decay of the ZIHC during the cycling process. This study will be helpful for developing next-generation high-performance energy storage devices.
  • 加载中
    1. [1]

      Liu, B.; Sun, Y. L.; Liu, L. Y.; Chen, J. T.; Yang, B. J.; Xu, S.; Yan, X. B. Energy Environ. Sci. 2019, 12, 887. doi: 10.1039/C8EE03417F  doi: 10.1039/C8EE03417F

    2. [2]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    3. [3]

      Dunn, B.; Kamath, H.; Tarascon, J. M. Science 2011, 334, 928. doi: 10.1126/science.1212741  doi: 10.1126/science.1212741

    4. [4]

      Tang, Y. P.; Yuan, S.; Guo, Y. Z.; Huang, R. A.; Wang, J. H.; Yang, B.; Dai, Y. N. Acta Phys. -Chim. Sin. 2016, 32, 2280.  doi: 10.3866/PKU.WHXB201605124

    5. [5]

      Liu, L.; Su, L.; Lang, J. W.; Hu, B.; Xu, S.; Yan, X. B. J. Mater. Chem. A 2017, 5, 5523. doi: 10.1039/c7ta00744b  doi: 10.1039/c7ta00744b

    6. [6]

      Li, Y. Y.; Li, Z. S.; Shen, P. K.Adv. Mater. 2013, 25, 2474. doi: 10.1002/adma.201205332  doi: 10.1002/adma.201205332

    7. [7]

      Liu, J.; Zhang, L.; Wu, H. B.; Lin, J.; Shen, Z.; Lou, X. W. Energy Environ. Sci. 2014, 7, 3709. doi: 10.1039/C4EE01475H  doi: 10.1039/C4EE01475H

    8. [8]

      Wang, P. Y.; Wang, R. T.; Lang, J. W.; Zhang, X.; Chen, Z. T.; Yan, X. B. J. Mater. Chem. A 2016, 4, 9760. doi: 10.1039/c6ta03633c  doi: 10.1039/c6ta03633c

    9. [9]

      Wang, H.; Zhu, C.; Chao, D.; Yan, Q.; Fan, H. J. Adv. Mater. 2017, 29, 1702093. doi: 10.1002/adma.201702093  doi: 10.1002/adma.201702093

    10. [10]

      Jia, Z. Y.; Liu, M. N.; Zhao, X. L.; Wang, X. S.; Pan, Z. H.; Zhang, Y. G. Acta Phys. -Chim. Sin.2017, 33, 2510.  doi: 10.3866/PKU.WHXB201705311

    11. [11]

      Li, H. X.; Lang, J. W.; Lei, S. L.; Chen, J. T.; Wang, K. J.; Liu, L. Y.; Zhang, T. Y.; Liu, W. S.; Yan, X. B. Adv. Funct. Mater. 2018, 28, 1800757. doi: 10.1002/adfm.201800757  doi: 10.1002/adfm.201800757

    12. [12]

      Li, Y. Z.; Wang, H. W.; Wang, L. B.; Mao, Z. F.; Wang, R.; He, B. B.; Gong, Y. S.; Hu, X. L. Small2019, 15, 1804539. doi: 10.1002/smll.201804539  doi: 10.1002/smll.201804539

    13. [13]

      Zhang, Z. Y.; Li, M. L.; Gao, Y.; Wei, Z. X.; Zhang, M. N.; Wang, C. Z.; Zeng, Y.; Zou, B.; Chen, G.; Du, F. Adv. Funct. Mater. 2018, 28, 1802684. doi: 10.1002/adfm.201802684  doi: 10.1002/adfm.201802684

    14. [14]

      Fan, L.; Lin, K. Y.; Wang, J.; Ma, R. F.; Lu, B. G. Adv. Mater. 2018, 30, 1800804. doi: 10.1002/adma.201800804  doi: 10.1002/adma.201800804

    15. [15]

      Sun, G. Q.; Yang, H. S.; Zhang, G. F.; Gao, J.; Jin, X. T.; Zhao, Y.; Jiang, L.; Qu, L. T. Energy Environ. Sci. 2018, 11, 3367. doi: 10.1039/c8ee02567c  doi: 10.1039/c8ee02567c

    16. [16]

      Wu, N. Z.; Yao, W. J.; Song, X. H.; Zhang, G.; Chen, B. J.; Yang, J. H.; Tang, Y. B. Adv. Energy Mater. 2019, 1803865. doi: 10.1002/aenm.201803865  doi: 10.1002/aenm.201803865

    17. [17]

      Yang, B. J.; Chen, J. T.; Lei, S. L.; Guo, R. S.; Yan, X. B. Adv. Energy Mater. 2017, 8, 1702409. doi: 10.1002/aenm.201702409  doi: 10.1002/aenm.201702409

    18. [18]

      Chen, J. T.; Yang, B. J.; Hou, H. J.; Li, H. X.; Liu, L.; Zhang, L.; Yan, X. B. Adv. Energy Mater. 2019, 1803894. doi: 10.1016/j.carbon.2017.01.005  doi: 10.1016/j.carbon.2017.01.005

    19. [19]

      Chen, J. T.; Yang, B. J.; Li, H. X.; Ma, P. J.; Lang, J. W.; Yan, X. B. J. Mater. Chem. A 2019. doi: 10.1039/c9ta01653h  doi: 10.1039/c9ta01653h

    20. [20]

      Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1, 16129. doi: 10.1038/nenergy.2016.129  doi: 10.1038/nenergy.2016.129

    21. [21]

      Haegyeom, K.; Jihyun, H.; Kyu-Young, P.; Hyungsub, K.; Sung-Wook, K.; Kisuk, K. Chem. Rev.2014, 114, 11788. doi: 10.1021/cr500232y  doi: 10.1021/cr500232y

    22. [22]

      Chao, D.; Zhu, C. R.; Song, M.; Liang, P.; Zhang, X.; Tiep, N. H.; Zhao, H.; Wang, J.; Wang, R.; Zhang, H.; et al. Adv. Mater. 2018, 30, e1803181. doi: 10.1002/adma.201803181  doi: 10.1002/adma.201803181

    23. [23]

      Shi, H. Y.; Ye, Y. J.; Liu, K.; Song, Y.; Sun, X. Angew. Chem. Int. Ed. 2018, 57, 16359. doi: 10.1002/anie.201808886  doi: 10.1002/anie.201808886

    24. [24]

      Huang, J.; Wang, Z.; Hou, M.; Dong, X.; Liu, Y.; Wang, Y.; Xia, Y. Nat. Commun. 2018, 9, 2906. doi: 10.1038/s41467-018-04949-4  doi: 10.1038/s41467-018-04949-4

    25. [25]

      Yang, Y.; Tang, Y.; Fang, G.; Shan, L.; Guo, J.; Zhang, W.; Wang, C.; Wang, L.; Zhou, J.; Liang, S. Energy Environ. Sci. 2018, 11, 3157. doi: 10.1039/C8EE01651H  doi: 10.1039/C8EE01651H

    26. [26]

      Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Nat. Commun. 2018, 9, 1656. doi: 10.1038/s41467-018-04060-8  doi: 10.1038/s41467-018-04060-8

    27. [27]

      Dong, L. B.; Ma, X. P.; Li, Y.; Zhao, L.; Liu, W. B.; Cheng, J. Y.; Xu, C. J.; Li, B. H.; Yang, Q. H.; Kang, F. Y. Energy Storage Mater. 2018, 13, 96. doi: 10.1016/j.ensm.2018.01.003  doi: 10.1016/j.ensm.2018.01.003

    28. [28]

      Wang, H.; Wang, M.; Tang, Y. B. Energy Storage Mater. 2018, 13, 1. doi: 10.1016/j.ensm.2017.12.022  doi: 10.1016/j.ensm.2017.12.022

    29. [29]

      Chen, J.; Yang, B.; Hou, H.; Li, H.; Liu, L.; Zhang, L.; Yan, X. Adv. Energy Mater. 2019, 1803894. doi: 10.1002/aenm.201803894  doi: 10.1002/aenm.201803894

    30. [30]

      Yang, B. J.; Chen, J. T.; Liu, L.; Ma, P. J.; Liu, B.; Lang, J. W.; Tang, Y.; Yan, X. B. Energy Storage Mater. 2019. doi: 10.1016/j.ensm.2019.04.008  doi: 10.1016/j.ensm.2019.04.008

    31. [31]

      Sevilla, M.; Mokaya, R. Energy Environ. Sci. 2014, 7, 1250. doi: 10.1039/C3EE43525C.  doi: 10.1039/C3EE43525C

    32. [32]

      Wang, H. L.; Mitlin, D.; Ding, J.; Li, Z.; Cui, K. J. Mater. Chem. A 2016, 4, 5149. doi: 10.1039/C6TA01392A  doi: 10.1039/C6TA01392A

    33. [33]

      Li, H. S.; Peng, L. L.; Zhu, Y.; Zhang, X. G.; Yu, G. H. Nano Lett. 2016, 16, 5938. doi: 10.1021/acs.nanolett.6b02932  doi: 10.1021/acs.nanolett.6b02932

    34. [34]

      Dong, S.; Li, Z.; Xing, Z.; Wu, X.; Ji, X.; Zhang, X. ACS Appl. Mater. Interfaces 2018, 10, 15542. doi: 10.1021/acsami.7b15314  doi: 10.1021/acsami.7b15314

  • 加载中
    1. [1]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    2. [2]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    3. [3]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    4. [4]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    5. [5]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Ning DINGSiyu WANGShihua YUPengcheng XUDandan HANDexin SHIChao ZHANG . Crystalline and amorphous metal sulfide composite electrode materials with long cycle life: Preparation and performance of hybrid capacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1784-1794. doi: 10.11862/CJIC.20240146

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    10. [10]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    11. [11]

      Ruiqing LIUWenxiu LIUKun XIEYiran LIUHui CHENGXiaoyu WANGChenxu TIANXiujing LINXiaomiao FENG . Three-dimensional porous titanium nitride as a highly efficient sulfur host. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 867-876. doi: 10.11862/CJIC.20230441

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    14. [14]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    15. [15]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    16. [16]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    17. [17]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    18. [18]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    19. [19]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    20. [20]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

Metrics
  • PDF Downloads(10)
  • Abstract views(1083)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return