Citation: Liu Wenyi, Li Linpo, Gui Qiuyue, Deng Bohua, Li Yuanyuan, Liu Jinping. Novel Hybrid Supercapacitors Based on Nanoarray Electrodes[J]. Acta Physico-Chimica Sinica, ;2020, 36(2): 190404. doi: 10.3866/PKU.WHXB201904049 shu

Novel Hybrid Supercapacitors Based on Nanoarray Electrodes

  • Corresponding author: Liu Jinping, liujp@whut.edu.cn
  • Received Date: 11 April 2019
    Revised Date: 13 May 2019
    Accepted Date: 14 May 2019
    Available Online: 22 February 2019

    Fund Project: the National Key R&D Program of China 2016YFA0202602the National Natural Science Foundation of China 51672205The project was supported by the National Natural Science Foundation of China (51672205, 51872104) and the National Key R&D Program of China (2016YFA0202602)the National Natural Science Foundation of China 51872104

  • With the ongoing depletion of fossil fuels, the exploration of sustainable energy resources and advanced energy technologies is necessary and the development of clean and sustainable energy storage devices has become an important topic worldwide. In this regard, rechargeable batteries and supercapacitors (SCs) are currently considered to be promising electrochemical energy storage systems for widespread applications in electronic devices, electric vehicles, and smart-grid energy storage stations. Batteries typically exhibit high energy densities but are limited by their low power density and relatively poor cycling performance. In contrast, SCs exhibit high power density, stable cyclability, and good safety, but the energy densities of SCs are generally inferior to those of batteries, which hinders their widespread application. A reliable approach to addressing this issue is to fabricate hybrid supercapacitors (HSCs) composed of battery-type and capacitive electrodes. This device configuration enables the direct integration of the high energy densities of batteries and high power densities of SCs, making HSCs a promising class of energy storage devices. However, the mismatch of capacity and rate performance between the battery-type and capacitive electrodes hinders the widespread applications of HSCs. A key challenge for the development of high-performance HSCs is to optimize the balance between both electrodes. Recently, tremendous efforts have been focused on the search for suitable electrodes and considerable progress has been achieved. Nevertheless, in traditional electrodes, binders are commonly used to combine individual active materials with conductive additives. Unfortunately, these binders are generally electrochemically inactive and insulating, reducing the overall specific capacity/capacitance and deteriorating the charge/mass transport. Recently, binder-free nanoarray electrodes have provided a promising opportunity for designing effective HSCs owing to the merits of their direct electron transport pathway, short ion diffusion length, and ordered-structure-enabled abundant reaction sites. This review briefly addresses the energy storage mechanism of HSCs and the advantages of array electrodes, and subsequently reviews the recent advances in emerging HSCs developed by our group. The performance-electrode structure relationship is discussed from the perspective of devices featuring different electrolytes, including organic, aqueous neutral and aqueous alkaline electrolytes. Moreover, some solutions are put forward to solve the existing issues of HSCs, and the potential applications of array electrode-based HSCs in flexible/wearable electronics are envisioned. Finally, the challenges and future development trends of HSCs are proposed.
  • 加载中
    1. [1]

      Zhou, T. H.; Lv, W.; Li, J.; Zhou, G. M.; Zhao, Y.; Fan, S. X.; Liu, B. L.; Li, B. H.; Kang, F. Y.; Yang, Q. H. Energy Environ. Sci. 2017, 10, 1694. doi: 10.1039/c7ee01430a  doi: 10.1039/c7ee01430a

    2. [2]

      Li, H. F.; Han, C. P.; Huang, Y.; Huang, Y.; Zhu, M. S.; Pei, Z. X.; Xue, Q.; Wang, Z. F.; Liu, Z. X.; Tang, Z. J.; et al. Energy Environ. Sci. 2018, 11, 941. doi: 10.1039/c7ee03232c  doi: 10.1039/c7ee03232c

    3. [3]

      Lu, Q.; He, Y. B.; Yu, Q.; Li, B.; Kaneti, Y. V.; Yao, Y.; Kang, F.; Yang, Q. H. Adv. Mater. 2017, 29, 1604460. doi: 10.1002/adma.201604460  doi: 10.1002/adma.201604460

    4. [4]

      Jia, Z. Y.; Liu, M. N.; Zhao, X. L.; Wang, X. S.; Pan, Z. H.; Zhang, Y. G. Acta Phys. -Chim. Sin. 2017, 33, 2510.  doi: 10.3866/PKU.WHXB201705311

    5. [5]

      Yoshino, A. Angew. Chem. Int. Ed. 2012, 51, 5798. doi: 10.1002/anie.201105006  doi: 10.1002/anie.201105006

    6. [6]

      Li, B.; Zheng, J. S.; Zhang, H. Y.; Jin, L. M.; Yang, D. J.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y. R.; Gong, R. Q.; et al. Adv. Mater. 2018, 30, 1705670. doi: 10.1002/adma.201705670  doi: 10.1002/adma.201705670

    7. [7]

      Dong, L. B.; Xu, C. J.; Li, Y.; Huang, Z. H.; Kang, F. Y.; Yang, Q. H.; Zhao, X. J. Mater. Chem. A 2016, 4, 4659. doi: 10.1039/C5TA10582J  doi: 10.1039/C5TA10582J

    8. [8]

      Hu, H.; Guan, B. Y.; Lou, X. W. Chemistry 2016, 1, 102. doi: 10.1016/j.chempr.2016.06.001  doi: 10.1016/j.chempr.2016.06.001

    9. [9]

      Zuo, W. H.; Li, R. Z; Zhou, C.; Li, Y. Y.; Xia, J. L.; Liu, J. P. Adv. Sci. 2017, 4, 1600539. doi: 10.1002/advs.201600539  doi: 10.1002/advs.201600539

    10. [10]

      Zuo, W. H.; Wang, C.; Li, Y. Y.; Liu, J. P. Sci. Rep. 2015, 5, 7780. doi: 10.1038/srep07780  doi: 10.1038/srep07780

    11. [11]

      Han, C. P.; Li, H. F; Shi, R. Y.; Xu, L.; Li, J.Q.; Kang, F. Y.; Li, B. H. Energy Environ. Mater. 2018, 1, 75. doi: 10.1002/eem2.12009  doi: 10.1002/eem2.12009

    12. [12]

      Wang, H. W.; Zhu, C. R.; Chao, D. L.; Yan, Q. Y.; Fan, H. J. Adv. Mater. 2017, 29, 1702093. doi: 10.1002/adma.201702093  doi: 10.1002/adma.201702093

    13. [13]

      Kim, H.; Cho, M. Y.; Kim, M. H.; Park, K. Y.; Gwon, H.; Lee, Y.; Roh, K. C.; Kang, K. Adv. Energy Mater. 2013, 3, 1500. doi: 10.1002/aenm.201300467  doi: 10.1002/aenm.201300467

    14. [14]

      Jin, T.; Han, Q. Q.; Jiao, L. F. Adv. Mater. 2019, 1806304. doi: 10.1002/adma.201806304  doi: 10.1002/adma.201806304

    15. [15]

      Qin, J.; Zhang, Q.; Cao, Z.; Li, X.; Hu, C. W.; Wei, B. Q. Nano Energy 2013, 2, 733. doi: 10.1016/j.nanoen.2012.12.009.  doi: 10.1016/j.nanoen.2012.12.009

    16. [16]

      Pasquier, A. D.; Plitz, I.; Gural, J.; Badway, F.; Amatucci, G. G. J. Power Sources 2004, 136, 160. doi: 10.1016/j.jpowsour.2004.05.023  doi: 10.1016/j.jpowsour.2004.05.023

    17. [17]

      Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Adv. Mater. 2011, 23, 4828. doi: 10.1002/adma.201100984  doi: 10.1002/adma.201100984

    18. [18]

      Frackowiak, E.; Jurewicz, K.; Delpeux, S.; Beguin, F. J. Power Sources 2001, 97–98, 82. doi: 10.1016/S0378-7753(01)00736-4  doi: 10.1016/S0378-7753(01)00736-4

    19. [19]

      Wang, G. P.; Zhang, L.; Zhang, J. J. Chem. Soc. Rev. 2012, 41, 797. doi: 10.1039/c1cs15060j  doi: 10.1039/c1cs15060j

    20. [20]

      Augustyn, V.; Simon, P.; Dunn, B. Energy Environ. Sci. 2014, 7, 1597. doi: 10.1039/c3ee44164d  doi: 10.1039/c3ee44164d

    21. [21]

      Jiang, Y. Q.; Liu, J. P. Energy Environ. Mater. 2019, 2, 30. doi: 10.1002/eem2.12028  doi: 10.1002/eem2.12028

    22. [22]

      Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Adv. Mater. 2012, 24, 5166. doi: 10.1002/adma.201202146  doi: 10.1002/adma.201202146

    23. [23]

      Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T. Nanoscale 2011, 3, 45. doi: 10.1039/c0nr00472c  doi: 10.1039/c0nr00472c

    24. [24]

      Amatucci, G. G.; Badway, F.; Du Pasquier, A.; Zheng, T. J. Electrochem. Soc. 2001, 148, A930. doi: 10.1149/1.1383553  doi: 10.1149/1.1383553

    25. [25]

      Plitz, I.; DuPasquier, A.; Badway, F.; Gural, J.; Pereira, N.; Gmitter, A.; Amatucci, G. G. Appl. Phys. A: Mater. Sci. Process. 2006, 82, 615. doi: 10.1007/s00339-005-3420-0  doi: 10.1007/s00339-005-3420-0

    26. [26]

      Sun, Y.; Zhao, L.; Pan, H.; Lu, X.; Gu, L.; Hu, Y. S.; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q. Nat. Commun. 2013, 4, 1870. doi: 10.1038/ncomms2878  doi: 10.1038/ncomms2878

    27. [27]

      Yu, L.; Wu, H. B.; Lou, X. W. Adv. Mater. 2013, 25, 2296. doi: 10.1002/adma.201204912  doi: 10.1002/adma.201204912

    28. [28]

      Zhao, L.; Hu, Y. S.; Li, H.; Wang, Z.; Chen, L. J. Adv. Mater. 2011, 23, 1385. doi: 10.1002/adma.201003294  doi: 10.1002/adma.201003294

    29. [29]

      Zhang, H.; Wang, Y.; Liu, P.; Chou, S. L.; Wang, J. Z.; Liu, H.; Wang, G.; Zhao, H. ACS Nano 2016, 10, 507. doi: 10.1021/acsnano.5b05441  doi: 10.1021/acsnano.5b05441

    30. [30]

      Kodama, R.; Terada, Y.; Nakai, I.; Komaba, S.; Kumagai, N. J. Electrochem. Soc. 2006, 153, A583. doi: 10.1149/1.2163788  doi: 10.1149/1.2163788

    31. [31]

      Deng, B. H; Lei, T. Y.; Zhu, W. H.; Xiao, L.; Liu, J. P. Adv. Funct. Mater. 2018, 28, 1704330. doi: 10.1002/adfm.201704330  doi: 10.1002/adfm.201704330

    32. [32]

      Li, Z.; Shen, W.; Wang, C.; Xu, Q.; Liu, H.; Wang, Y.; Xia, Y. J. J. Mater. Chem. A 2016, 4, 17111. doi: 10.1039/C6TA08416H  doi: 10.1039/C6TA08416H

    33. [33]

      Ni, J. F.; Fu, S. D.; Wu, C.; Zhao, Y.; Maier, J.; Yu, Y.; Li, L. Adv. Energy Mater. 2016, 6, 1502568. doi: 10.1002/aenm.201502568  doi: 10.1002/aenm.201502568

    34. [34]

      Shirpour, M.; Cabana, J.; Doeff, M. Energy Environ. Sci. 2013, 6, 2538. doi: 10.1039/c3ee41037d  doi: 10.1039/c3ee41037d

    35. [35]

      Gui, Q. Y.; Ba, D. L.; Zhao, Z. S.; Mao, Y. F.; Zhu, W. H.; Lei, T. Y.; Tan, J. F.; Deng, B. H.; Xiao, L.; Li, Y. Y. Small Methods 2019, 3, 1800371. doi: 10.1002/smtd.201800371  doi: 10.1002/smtd.201800371

    36. [36]

      Miller, J. R.; Simon, P. Science 2008, 321, 651. doi: 10.1126/science.1158736  doi: 10.1126/science.1158736

    37. [37]

      Huang, Y.; Zhu, M. S.; Huang, Y.; Pei, Z. X.; Li, H. F.; Wang, Z. F.; Xue, Q.; Zhi, C. Y. Adv. Mater. 2016, 28, 8344. doi: 10.1002/adma.201601928  doi: 10.1002/adma.201601928

    38. [38]

      Suo, L.; Borodin, O.; Gao, T.; Olguin, M.; Ho, J.; Fan, X.; Luo, C.; Wang, C.; Xu, K. Science 2015, 350, 938. doi: 10.1126/science.aab1595  doi: 10.1126/science.aab1595

    39. [39]

      Yamada, Y.; Usui, K.; Sodeyama, K.; Ko, S.; Tateyama, Y.; Yamada, A. Nat. Energy 2016, 1, 16129. doi: 10.1038/nenergy.2016.129  doi: 10.1038/nenergy.2016.129

    40. [40]

      Zuo, W. H.; Xie, C. Y.; Xu, P.; Li, Y. Y.; Liu, J. P. Adv. Mater. 2017, 29, 1703463. doi: 10.1002/adma.201703463  doi: 10.1002/adma.201703463

    41. [41]

      Li, R. Z.; Ba, X.; Zhang, H. F.; Xu, P.; Li, Y. Y.; Cheng, C. W.; Liu, J. P. Adv. Funct. Mater. 2018, 28, 1800497. doi: 10.1002/adfm.201800497  doi: 10.1002/adfm.201800497

    42. [42]

      Li, R. Z.; Lin, Z.; Ba, X.; Li, Y. Y.; Ding, R.; Liu, J. P. Nanoscale Horiz. 2016, 1, 150. doi: 10.1039/C5NH00100E  doi: 10.1039/C5NH00100E

    43. [43]

      Kolathodi, M. S.; Palei, M.; Natarajan, T. S. J. Mater. Chem. A 2015, 3, 7513. doi: 10.1039/C4TA07075E  doi: 10.1039/C4TA07075E

    44. [44]

      Yan, J.; Fan, Z.; Sun, W.; Ning, G.; Wei, T.; Zhang, Q.; Zhang, R.; Zhi, L.; Wei, F. Adv. Funct. Mater. 2012, 22, 2632. doi: 10.1002/adfm.201102839  doi: 10.1002/adfm.201102839

    45. [45]

      Li, Y. Y.; Tang, F.; Wang, R. J.; Wang, C.; Liu, J. P. ACS Appl. Mater. Interfaces 2016, 8, 30232. doi: 10.1021/acsami.6b10249  doi: 10.1021/acsami.6b10249

    46. [46]

      Dai, C. S.; Chien, P. Y.; Lin, J. Y.; Chou, S. W.; Wu, W. K.; Li, P. H.; Wu, K. Y.; Lin, T. W. ACS Appl. Mater. Interfaces 2013, 5, 12168. doi: 10.1021/am404196s  doi: 10.1021/am404196s

    47. [47]

      Jiang, Y. Q.; Zhou, C.; Liu, J. P. Energy Storage Mater. 2018, 11, 75. doi: 10.1016/j.ensm.2017.09.013  doi: 10.1016/j.ensm.2017.09.013

    48. [48]

      Wang, X. W.; Li, M. X.; Chang, Z.; Wang, Y. F.; Chen, B. W.; Zhang, L. X.; Wu, Y. P. J. Electrochem. Soc. 2015, 162, A1966. doi: 10.1149/2.0041511jes  doi: 10.1149/2.0041511jes

    49. [49]

      Qu, Q. T.; Yang, S. B.; Feng, X. L. Adv. Mater. 2011, 23, 5574. doi: 10.1002/adma.201103042  doi: 10.1002/adma.201103042

    50. [50]

      Zhou, C.; Zhang, Y. W.; Li, Y. Y.; Liu, J. P. Nano Lett. 2013, 13, 2078. doi: 10.1021/nl400378j  doi: 10.1021/nl400378j

    51. [51]

      Li, R. Z.; Wang, Y. M.; Zhou, C.; Wang, C.; Ba, X.; Li, Y. Y.; Huang, X. T.; Liu, J. P. Adv. Funct. Mater. 2015, 25, 5384. doi: 10.1002/adfm.201502265  doi: 10.1002/adfm.201502265

    52. [52]

      Jiang, Y. Q.; Zhao, D. F.; Ba, D. L.; Li, Y. Y.; Liu, J. P. Adv. Mater. Inter. 2018, 5, 1801043. doi: 10.1002/admi.201801043  doi: 10.1002/admi.201801043

    53. [53]

      Zuo, W. H.; Zhu, W. H.; Zhao, D. F.; Sun, Y. F.; Li, Y. Y.; Liu, J. P.; Lou, X. W. Energy Environ. Sci. 2016, 9, 2881. doi: 10.1039/c6ee01871h  doi: 10.1039/c6ee01871h

    54. [54]

      Zhao, Z. S.; Ye, Y. H.; Zhu, W. H.; Xiao, L.; Deng, B. H.; Liu, J. P. Chinese Chem. Lett. 2018, 29, 629. doi: 10.1016/j.cclet.2018.01.011  doi: 10.1016/j.cclet.2018.01.011

    55. [55]

      Zhu, W. H.; Li, R. Z.; Xu, P.; Li, Y. Y.; Liu, J. P. J. Mater. Chem. A 2017, 5, 22216. doi: 10.1039/c7ta07036e  doi: 10.1039/c7ta07036e

    56. [56]

      Gui, Q. Y.; Wu, L. X.; Li, Y. Y.; Liu, J. P. Adv. Sci. 2019, 1802067. doi: 10.1002/advs.201802067  doi: 10.1002/advs.201802067

    57. [57]

      Xia, Y.; Mathis, T. S.; Zhao, M. Q.; Anasori, B.; Dang, A.; Zhou, Z. H.; Cho, H.; Gogotsi, Y.; Yang, S. Nature 2018, 557, 409. doi; 10.1038/s41586-018-0109-z  doi: 10.1038/s41586-018-0109-z

    58. [58]

      Wang, C.; Zhan, Y.; Wu, L. X.; Li, Y. Y.; Liu, J. P. Nanotechnology 2014, 25, 305401. doi: 10.1088/0957-4484/25/30/305401  doi: 10.1088/0957-4484/25/30/305401

    59. [59]

      Ba, D. L.; Li, Y. Y.; Sun, Y. F; Guo, Z. P; Liu, J. P. Sci. China Mater. 2019, 62, 487. doi: 10.1007/s40843-018-9326-y  doi: 10.1007/s40843-018-9326-y

    60. [60]

      Liu, J. P; Guan, C.; Zhou, C.; Fan, Z.; Ke, Q. Q.; Zhang, G. Z.; Liu, C.; Wang, J. Adv. Mater. 2016, 28, 8732. doi: 10.1002/adma.201603038  doi: 10.1002/adma.201603038

    61. [61]

      Li, B.; Zheng, J.; Zhang, H.; Jin, L.; Yang, D.; Lv, H.; Shen, C.; Shellikeri, A.; Zheng, Y.; Gong, R.; et al. Adv. Mater. 2018, 30, e1705670. doi: 10.1002/adma.201705670  doi: 10.1002/adma.201705670

    62. [62]

      Zhao, C. M.; Wang, X.; Wang, S. M.; Wang, Y. Y.; Zhao, Y. X.; Zheng, W. T. Int. J. Hydrogen Energy 2012, 37, 11846. doi: 10.1016/j.ijhydene.2012.05.138  doi: 10.1016/j.ijhydene.2012.05.138

  • 加载中
    1. [1]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    2. [2]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    3. [3]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    4. [4]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    5. [5]

      Yuping Wei Yiting Wang Jialiang Jiang Jinxuan Deng Hong Zhang Xiaofei Ma Junjie Li . Interdisciplinary Teaching Practice——Flexible Wearable Electronic Skin for Low-Temperature Environments. University Chemistry, 2024, 39(10): 261-270. doi: 10.12461/PKU.DXHX202404007

    6. [6]

      Yu'ang Liu Yuechao Wu Junyu Huang Tao Wang Xiaohong Liu Tianying Yan . Computation of Absolute Electrode Potential of Standard Hydrogen Electrode Using Ab Initio Method. University Chemistry, 2025, 40(3): 215-222. doi: 10.12461/PKU.DXHX202407112

    7. [7]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    8. [8]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    9. [9]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    10. [10]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    11. [11]

      Tong Zhou Jun Li Zitian Wen Yitian Chen Hailing Li Zhonghong Gao Wenyun Wang Fang Liu Qing Feng Zhen Li Jinyi Yang Min Liu Wei Qi . Experiment Improvement of “Redox Reaction and Electrode Potential” Based on the New Medical Concept. University Chemistry, 2024, 39(8): 276-281. doi: 10.3866/PKU.DXHX202401005

    12. [12]

      Ji-Quan Liu Huilin Guo Ying Yang Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031

    13. [13]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    14. [14]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    15. [15]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    16. [16]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    17. [17]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    18. [18]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    19. [19]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    20. [20]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

Metrics
  • PDF Downloads(5)
  • Abstract views(1248)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return