Citation: Ding Feixiang, Gao Fei, Rong Xiaohui, Yang Kai, Lu Yaxiang, Hu Yong-Sheng. Mixed-Phase Na0.65Li0.13Mg0.13Ti0.74O2 as a High-Performance Na-Ion Battery Layered Anode[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190402. doi: 10.3866/PKU.WHXB201904022 shu

Mixed-Phase Na0.65Li0.13Mg0.13Ti0.74O2 as a High-Performance Na-Ion Battery Layered Anode

  • Corresponding author: Hu Yong-Sheng, yshu@iphy.ac.cn
  • These authors contributed equally to this work
  • Received Date: 4 April 2019
    Revised Date: 28 April 2019
    Accepted Date: 14 May 2019
    Available Online: 31 May 2019

  • With the development of clean and sustainable energy sources, the demand for large-scale electrochemical energy storage systems has rapidly increased over the last few years. Rechargeable Na-ion batteries (NIBs), one of the most promising energy storage technologies, have received a great deal of attention. Titanium-based P2-type layered oxides are attractive candidates for NIB anode materials, owing to their suitable redox potential, low cost, air stability and high safety. The exposed large interlayers of P2 configuration provide facile channels for Na+ insertion/extraction when employed as electrode materials for room temperature, non-aqueous NIBs. In this paper, a novel P2-type Na0.65Li0.13Mg0.13Ti0.74O2 is synthesized by a solid-state reaction method. An orthorhombic phase of Na0.9Mg0.45Ti1.55O2 is observed with the increase in calcination time. During the long calcination process, it is speculated that some lattice Na+ and Li+ of the previously formed P2 phase compound would be volatilized or extracted by O2, forming a low Na-content orthorhombic phase based on the layered host structure. In particular, when the precursor was calcined at 1273 K for 24 h, a perfect biphasic hybrid composite was synthesized. The Na storage performance of the pure P2 compound and hybrid composite were evaluated respectively in sodium half cells with voltage range of 0.2–2.5 V. The P2-type electrode can deliver a reversible capacity of 85.1 mAh·g-1 (theoretical capacity of approximately 108.5 mAh·g-1), whereas, the sample with the orthorhombic phase shows an enhanced initial reversible capacity of 96.3 mAh·g-1. Both of the curves are smooth with no observed plateau, indicating the good structural stability of the electrode during cycling. Thus, the hybrid composite exhibits better cycling performance (capacity retention of 89.7% vs. 84.4% for pure P2, after 400 cycles at current density of 1C) and better rate capability (56.6 mAh·g-1 at 5C vs 47.1 mAh·g-1 at 2C). These results can be attributed to the introduced second phase, which improves the electron and bulk ion conductivity and helps stabilize the structure. Therefore, this novel two-phase intergrowth composite could serve as a promising anode candidate for the large-scale energy storage application of NIBs. Moreover, this structural design strategy could be used for other layered oxides to improve their energy density and cycling stability.
  • 加载中
    1. [1]

      Ding, F.; Li, J.; Deng, F.; Xu, G.; Liu, Y.; Yang, K.; Kang, F. ACS Appl. Mater. Interfaces 2017, 9, 27936. doi: 10.1021/acsami.7b07221  doi: 10.1021/acsami.7b07221

    2. [2]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    3. [3]

      Pan, H.; Hu, Y. S.; Chen, L. Energy Environ. Sci. 2013, 6, 2338. doi:10.1039/c3ee40847g  doi: 10.1039/c3ee40847g

    4. [4]

      Lu, Y.; Zhao, C.; Qi, X.; Qi, Y.; Li, H.; Huang, X.; Chen, L.; Hu, Y. S. Adv. Energy Mater. 2018, 8, 1800108. doi: 10.1002/aenm.201800108  doi: 10.1002/aenm.201800108

    5. [5]

      Zhao, C.; Wang, Q.; Lu, Y.; Li, B.; Chen, L.; Hu, Y. S. Sci. Bull. 2018, 63, 1125. doi: 10.1016/j.scib.2018.07.018  doi: 10.1016/j.scib.2018.07.018

    6. [6]

      Qi, Y.; Mu, L.; Zhao, J.; Hu, Y. S.; Liu, H.; Dai, S. Angew. Chem. Int. Ed. 2015, 54, 9911. doi: 10.1002/anie.201503188  doi: 10.1002/anie.201503188

    7. [7]

      Qi, Y.; Zhao, J.; Yang, C.; Liu, H.; Hu, Y. S. Small Methods 2018, 1800111. doi: 10.1002/smtd.201800111  doi: 10.1002/smtd.201800111

    8. [8]

      Li, Q.; Jiang, K.; Li, X.; Qiao, Y.; Zhang, X.; He, P.; Guo, S.; Zhou, H. Adv. Energy Mater. 2018, 8. doi: 10.1002/aenm.201801162  doi: 10.1002/aenm.201801162

    9. [9]

      Hwang, J. Y.; Myung, S. T.; Sun, Y. K. Chem. Soc. Rev. 2017, 46, 3529. doi: 10.1039/c6cs00776g  doi: 10.1039/c6cs00776g

    10. [10]

      Wang, Y.; Yu, X.; Xu, S.; Bai, J.; Xiao, R.; Hu, Y. S.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2013, 4, 2365. doi: 10.1038/ncomms3365  doi: 10.1038/ncomms3365

    11. [11]

      Wang, P. F.; Yao, H. R.; Zuo, T. T.; Yin, Y. X.; Guo, Y. G. Chem. Commun. 2017, 53, 1957. doi: 10.1039/c6cc09378g  doi: 10.1039/c6cc09378g

    12. [12]

      Wang, Y.; Xiao, R.; Hu, Y. S.; Avdeev, M.; Chen, L. Nat. Commun. 2015, 6, 6954. doi: 10.1038/ncomms7954  doi: 10.1038/ncomms7954

    13. [13]

      Yu, H.; Ren, Y.; Xiao, D.; Guo, S.; Zhu, Y.; Qian, Y.; Gu, L.; Zhou, H. Angew. Chem. Int. Ed. 2014, 53, 8963. doi: 10.1002/anie.201404549  doi: 10.1002/anie.201404549

    14. [14]

      Zhao, C.; Avdeev, M.; Chen, L.; Hu, Y. S. Angew. Chem. Int. Ed. 2018, 57, 7056. doi: 10.1002/anie.201801923  doi: 10.1002/anie.201801923

    15. [15]

      Wang, P. F.; You, Y.; Yin, Y. X.; Wang, Y. S.; Wan, L. J.; Gu, L.; Guo, Y. G. Angew. Chem. Int. Ed. 2016, 55, 7445. doi: 10.1002/anie.201602202  doi: 10.1002/anie.201602202

    16. [16]

      Zhao, W.; Tsuchiya, Y.; Yabuuchi, N. Small Methods 2018, 1800032. doi: 10.1002/smtd.201800032  doi: 10.1002/smtd.201800032

    17. [17]

      Chen, J.; Li, L.; Wu, L.; Yao, Q.; Yang, H.; Liu, Z.; Xia, L.; Chen, Z.; Duan, J.; Zhong, S. J. Power Sources 2018, 406, 110. doi: 10.1016/j.jpowsour.2018.10.058  doi: 10.1016/j.jpowsour.2018.10.058

    18. [18]

      Yabuuchi, N.; Hara, R.; Kajiyama, M.; Kubota, K.; Ishigaki, T.; Hoshikawa, A.; Komaba, S. Adv. Energy Mater. 2014, 4, 1301453. doi: 10.1002/aenm.201301453  doi: 10.1002/aenm.201301453

    19. [19]

      Li, Z.; Ding, F.; Zhao, Y.; Wang, Y.; Li, J.; Yang, K.; Gao, F. Ceram. Inter. 2016, 42, 15464. doi: 10.1016/j.ceramint.2016.06.198  doi: 10.1016/j.ceramint.2016.06.198

    20. [20]

      Guo, S.; Yu, H.; Liu, P.; Ren, Y.; Zhang, T.; Chen, M.; Ishida, M.; Zhou, H. Energy Environ. Sci. 2015, 8, 1237. doi: 10.1039/c4ee03361b  doi: 10.1039/c4ee03361b

    21. [21]

      Guo, S.; Liu, P.; Sun, Y.; Zhu, K.; Yi, J.; Chen, M.; Ishida, M.; Zhou, H. Angew. Chem. Int. Ed. 2015, 54, 11701. doi: 10.1002/anie.201505215  doi: 10.1002/anie.201505215

    22. [22]

      Xiao, Y.; Wang, P. F.; Yin, Y. X.; Zhu, Y. F.; Yang, X.; Zhang, X. D.; Wang, Y.; Guo, X. D.; Zhong, B. H.; Guo, Y. G. Adv. Energy Mater. 2018, 8, 1800492. doi: 10.1002/aenm.201800492  doi: 10.1002/aenm.201800492

  • 加载中
    1. [1]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    5. [5]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    11. [11]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    12. [12]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    13. [13]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    16. [16]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    17. [17]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    18. [18]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    19. [19]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    20. [20]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(18)
  • Abstract views(1563)
  • HTML views(166)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return