Citation: Li Haixia, Wang Jiwei, Jiao Lifang, Tao Zhanliang, Liang Jing. Spherical Nano-SnSb/C Composite as a High-Performance Anode Material for Sodium Ion Batteries[J]. Acta Physico-Chimica Sinica, ;2020, 36(5): 190401. doi: 10.3866/PKU.WHXB201904017 shu

Spherical Nano-SnSb/C Composite as a High-Performance Anode Material for Sodium Ion Batteries

  • Corresponding author: Liang Jing, liangjing@nankai.edu.cn
  • Received Date: 3 April 2019
    Revised Date: 10 May 2019
    Accepted Date: 21 May 2019
    Available Online: 31 May 2019

    Fund Project: the National Natural Science Foundation of China 51771094the National Key R & D Program of China 2016YFB0101201The project was supported by the National Key R & D Program of China (2016YFB0901500, 2016YFB0101201) and the National Natural Science Foundation of China (51771094)the National Key R & D Program of China 2016YFB0901500

  • Sodium-ion batteries (SIBs) have recently garnered considerable attention because of the greater abundance, wider distribution, and lower cost of Na compared to Li. However, the investigation is insufficient, mainly because Na+ is larger and heavier than Li+, thereby limiting the Na+ insertion and extraction ability from the host materials. Anodes with alloying reactions such as Sn, Ge, and Sb have been considered for SIBs owing to their high gravimetric and volumetric specific capacities. In this study, we devised a one-pot reaction strategy for the in-situ fabrication of a spherical porous nano-SnSb/C composite by employing aerosol spray pyrolysis, and subsequently applied it as an anode in SIBs. The products of spray pyrolysis generally feature three-dimensional spherical hierarchical structures, which are considered to be relatively stable and also act as high-packing-density electrode materials. Additionally, they can be easily handled during the fabrication of the electrode. By adjusting the precursor concentration of SnCl2·2H2O and SbCl3, different sizes for SnSb nanoparticles (10 and 20 nm) were obtained. The crystal structures and morphologies of the as-prepared samples were characterized using X-ray diffraction, field-emission scanning electron microscopy, and high-resolution transmission electron microscopy. Thermal gravimetric analysis was carried out to analyze the carbon content of SnSb/C composites by using a TG-DSC analyzer with a heating rate of 5 ℃·min-1 in air from 25 ℃ to 600 ℃. The specific surface areas of the microspheres were determined by Brunauer-Emmett-Teller analysis. X-ray photoelectron spectroscopy and Raman spectroscopy were used to investigate the studied materials. The micro-nanostructured composite is composed of SnSb nanoparticles (10 and 20 nm); moreover, the carbon content and size of SnSb nanograins could be controlled by altering the reaction conditions. Owing to its unique structure, the obtained nano-composite displays stable cycle performance and high rate capability as the anode for SIBs. The specific capacity of 10-SnSb/C was 722.1 mAh·g-1 at the first cycle, and the coulombic efficiency of the first cycle was 86.3%. The 10-SnSb/C was stable at different current densities of 100, 1000, and 3000 mA·g-1, and exhibited specific capacities of 607.7, 645.4 and 452.2 mAh·g-1, respectively. The reversible capacity reached 623 mAh·g-1 after 200 cycles at a current density of 1000 mA·g-1, and the capacity retention rate was 95%. The outstanding performance of SnSb/C was due to its distinctive nanostructure, which could effectively improve the utilization rate of active materials, facilitate the transportation of Na+ ions, and prevent the nanoparticle pulverization/agglomeration upon prolonged cycling. The facile synthesis technique and good performance would shed light on the practical development of SnSb/C nanocomposites as high rate capability and long cycle life electrodes for SIBs.
  • 加载中
    1. [1]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.201200691  doi: 10.1002/adfm.201200691

    2. [2]

      Yabuuchi, N.; Kubota, K.; Dahbi, M.; Komaba, S. Chem. Rev. 2014, 114, 11636. doi: 10.1021/cr500192f  doi: 10.1021/cr500192f

    3. [3]

      Ong, S. P.; Chevrier, V. L.; Hautier, G.; Jain, A.; Moore, C.; Kim, S.; Ma, X.; Ceder, G. Energy Environ. Sci. 2011, 4, 3680. doi: 10.1039/C1EE01782A  doi: 10.1039/C1EE01782A

    4. [4]

      Yang, Z.; Zhang, W.; Shen, Y.; Yuan, L. X.; Huang, Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062.  doi: 10.3866/PKU.WHXB201603231

    5. [5]

      Hu, Z.; Wang, L. X.; Zhang, K.; Wang, J. B.; Cheng, F.Y.; Tao, Z. L.; Chen, J. Angew. Chem. Int. Ed. 2014, 53, 12794. doi: 10.1002/ange.201407898  doi: 10.1002/ange.201407898

    6. [6]

      Pan, H. L.; Hu, Y. S.; Chen, L. Q. Energy Environ. Sci. 2013, 6, 2338. doi: 10.1039/C3EE40847G  doi: 10.1039/C3EE40847G

    7. [7]

      Xiang, X. D.; Zhang, K.; Chen, J. Adv. Mater. 2015, 27, 5343. doi: 10.1002/chin.201544273  doi: 10.1002/chin.201544273

    8. [8]

      Chen, C. C.; Zhang, N.; Liu, Y. C.; Wang, Y. J.; Chen, J. Acta Phys. -Chim. Sin. 2016, 32, 349.  doi: 10.3866/PKU.WHXB201512073

    9. [9]

      Zhuang, L. Acta Phys. -Chim. Sin. 2017, 33, 1271.  doi: 10.3866/PKU.WHXB201705031

    10. [10]

      Xiang, X. D.; Lu, Y. Y.; Chen, J. Acta Chim. Sin.2017, 75, 154.  doi: 10.6023/A16060275

    11. [11]

      Fan, W.; Qin, C. L.; Zhao, W. M.; Liao, B. J. Hebei Univ. Tech. 2018, 47, 37.  doi: 10.14081/j.cnki.hgdxb.2018.05.006

    12. [12]

      Cao, Y. L.; Xiao, L. F.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z. M.; Saraf, L. V.; Yang, Z. G.; Liu, J. Nano Lett. 2012, 12, 3783. doi: 10.1021/nl3016957  doi: 10.1021/nl3016957

    13. [13]

      Li, W. H.; Zeng, L. C.; Yang, Z. Z.; Gu, L.; Wang, J. Q.; Liu, X. W.; Cheng, J. X.; Yu, Y. Nanoscale 2014, 6, 693. doi: 10.1039/C3NR05022J  doi: 10.1039/C3NR05022J

    14. [14]

      Liu, S.; Shao, L. Y.; Zhang, X. J.; Tao, Z. L.; Chen, J. Acta Phys. -Chim. Sin. 2018, 34, 581.  doi: 10.3866/PKU.WHXB201711222

    15. [15]

      Datta, D.; Li, J.; Shenoy, V. B. ACS Appl. Mater. Inter. 2014, 6, 1788. doi: 10.1021/am404788e  doi: 10.1021/am404788e

    16. [16]

      Wu, Z. G.; Zhong, Y. J.; Li, J. T.; Guo, X. D.; Huang, L.; Zhong, B. H.; Sun, S. G. J. Mater. Chem. A 2015, 3, 10092. doi: 10.1039/C4TA01253D  doi: 10.1039/C4TA01253D

    17. [17]

      Xiao, L. F.; Cao, Y. L.; Xiao, J.; Wang, W.; Kovarik, L.; Nie, Z. M.; Liu, J. Chem. Commun. 2012, 48, 3321. doi: 10.1039/C2CC17129E  doi: 10.1039/C2CC17129E

    18. [18]

      Shiva, K.; Rajendra, H. B.; Bhattacharyya, A. J. ChemPlusChem 2015, 80, 516. doi: 10.1002/cplu.201402291  doi: 10.1002/cplu.201402291

    19. [19]

      Wang, J. W.; Lu, Y. Y.; Zhang, N.; Xiang, X. D.; Liang, J.; Chen, J. RSC Adv. 2016, 6, 95805. doi: 10.1039/c6ra19353f  doi: 10.1039/c6ra19353f

    20. [20]

      Xiong, X. Q.; Luo, W.; Hu, X. L.; Chen, C. J.; Qie, L.; Hou, D. F.; Huang, Y. H. Sci. Rep. 2015, 5, 9254. doi: 10.1038/srep09254  doi: 10.1038/srep09254

    21. [21]

      Zhang, N.; Liu, Y. C.; Lu, Y.; Han, X. P.; Cheng, F. Y; Chen, J. Nano Res. 2015, 8, 3384. doi: 10.1007/s12274-015-0838-3  doi: 10.1007/s12274-015-0838-3

    22. [22]

      Jackson, S. T.; Nuzzo, R. G. Appl. Surface Sci. 1995, 90, 195. doi: 10.1016/0169-4332(95)00079-8  doi: 10.1016/0169-4332(95)00079-8

    23. [23]

      Lesiak, B.; Kover L.; Toth, J.; Zemek, J.; Jiricek, P.; Kromka, A.; Rangam, N. Appl. Surface Sci. 2018, 452, 223. doi: 10.1016/j.apsusc.2018.04.269  doi: 10.1016/j.apsusc.2018.04.269

    24. [24]

      Wang, H. K.; Wu, Q. Z; Cao, D. X.; Lu, X.; Wang, J. K.; Leung, M. K. H.; Cheng, S. D.; Lu, L.; Niu, C. M. Mater. Today Energy 2016, 1–2, 24. doi: 10.1016/j.mtener.2016.11.003  doi: 10.1016/j.mtener.2016.11.003

    25. [25]

      Ji, L. W.; Gu, M.; Shao, Y. Y.; Li, X. L.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z. M.; Xiao, J.; Wang, C. M.; Zhang, J. G.; Liu, J. Adv. Mater. 2014, 26, 2901. doi: 10.1002/adma.201304962  doi: 10.1002/adma.201304962

    26. [26]

      Liu, Y. C.; Zhang, N.; Jiao, L. F.; Chen, J. Adv. Mater. 2015, 27, 6702. doi: 10.1002/adma.201503015  doi: 10.1002/adma.201503015

    27. [27]

      Wang, C. L.; Xu, Y.; Fang, Y. G.; Zhou, M.; Liang, L. Y.; Singh, S.; Zhao, H. P.; Schober, A.; Lei, Y. J. Am. Chem. Soc. 2015, 137, 3124. doi: 10.1021/jacs.5b00336  doi: 10.1021/jacs.5b00336

  • 加载中
    1. [1]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    2. [2]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    3. [3]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    4. [4]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    5. [5]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    6. [6]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    7. [7]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    10. [10]

      Xintong ZhuBin CaoChong YanCheng TangAibing ChenQiang Zhang . Advances in coating strategies for graphite anodes in lithium-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100096-0. doi: 10.1016/j.actphy.2025.100096

    11. [11]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    12. [12]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    13. [13]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    14. [14]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    15. [15]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    17. [17]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    19. [19]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(24)
  • Abstract views(1274)
  • HTML views(261)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return