Citation: GUO Feng, CHEN Peng, KANG Tuo, WANG Yalong, LIU Chenghao, SHEN Yanbin, LU Wei, CHEN Liwei. Silicon-loaded Lithium-Carbon Composite Microspheres as Lithium Secondary Battery Anodes[J]. Acta Physico-Chimica Sinica, ;2019, 35(12): 1365-1371. doi: 10.3866/PKU.WHXB201903008 shu

Silicon-loaded Lithium-Carbon Composite Microspheres as Lithium Secondary Battery Anodes

  • Corresponding author: SHEN Yanbin, ybshen2017@sinano.ac.cn CHEN Liwei, lwchen2008@sinano.ac.cn
  • Received Date: 4 March 2019
    Revised Date: 2 April 2019
    Accepted Date: 2 April 2019
    Available Online: 10 December 2019

    Fund Project: The project was supported by the National Basic Research Program of China (2016YFB0100102), the "Strategic Priority Research Program" of the CAS, China (XDA09010600, XDA09010303), and the National Nature Science Foundation of China (21625304, 21733012)the National Nature Science Foundation of China 21733012the National Basic Research Program of China 2016YFB0100102the National Nature Science Foundation of China 21625304the "Strategic Priority Research Program" of the CAS, China XDA09010600the "Strategic Priority Research Program" of the CAS, China XDA09010303

  • Lithium metal is the most promising anode material for Li (ion) batteries from the viewpoint of energy density because of its high theoretical specific capacity (3860 mAh∙g-1, 2061 mAh∙cm−3) and low reduction potential (−3.04 V vs standard hydrogen electrode (SHE)). Lithium has been used as an anode material for lithium metal batteries since the 1970s. However because of the serious reaction between Li and non-aqueous electrolytes, the large volume expansion during Li plating, and the formation of Li dendrites during cycling, Li batteries with Li metal anodes show very low Coulombic efficiency (CE) and are easily short-circuited. This limits the widespread commercialization of Li metal anodes for Li batteries. Motivated by our previous study on the development of a Li carbon nanotube (Li-CNT) composite anode material, in this study, we prepared a Si-loaded Li carbon nanotube composite (Li-CNT-Si) via a facile molten impregnation method. The introduction of Si nanoparticles increased the Li content of the composite, thus increasing its specific capacity (the specific capacity of the Li-CNT composite increased from 2000 mAh∙g-1 to 2600 mAh∙g-1 with the addition of 10% Si (mass fraction)). Moreover, Si nanoparticles decreased the polarization for Li plating/stripping, resulting in an improved electrochemical performance. The Li-CNT-Si composite showed the merits of the Li-CNT composite with the advantages of limited electrode volume expansion and negligible Li dendrite formation during cycling. Furthermore, the Si nanoparticles filled the pores inside the Li-CNT microspheres, thus preventing the electrolyte from flowing into the microspheres to corrode the Li metal present inside them. Hence, the incorporation of Si nanoparticles improved the CE of the composite anode. When the 10% Si-loaded Li-CNT-Si composite was used as an anode and coupled with a commercial LiFePO4 cathode, the resulting battery showed more than 900 stable cycles in an ether-based electrolyte at a charge/discharge rate of 1C (0.7 mA∙cm-2) corresponding to a CE of 96.7%, which is considerably higher than those of the Li-CNT (90.1%) and Li metal foil (79.3%) anodes obtained under the same conditions. We believe that the Li-CNT-Si composite prepared in this study is a promising anode material for Li secondary batteries having high energy density, particularly for those employing Li-free cathodes, e.g., Li-sulfur and Li-oxygen batteries.
  • 加载中
    1. [1]

      Tarascon, J. M.; Armand, M. Nature 2001, 414 (6861), 359. doi: 10.1038/35104644  doi: 10.1038/35104644

    2. [2]

      Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 1800561. doi: 10.1002/adma.201800561  doi: 10.1002/adma.201800561

    3. [3]

      George, E. B. J. Electrochem Soc. 2017, 164 (1), A5019. doi: 10.1149/2.0251701jes  doi: 10.1149/2.0251701jes

    4. [4]

      Xu, W.; Wang, J.; Ding, F.; Chen, X.; Nasybulin, E.; Zhang, Y.; Zhang, J. Energy Environ. Sci. 2014, 7. doi: 10.1039/C3EE40795K  doi: 10.1039/C3EE40795K

    5. [5]

      Zhang, S. S. J. Power Sources 2013, 231 (2), 153. doi: 10.1016/j.jpowsour.2012.12.102  doi: 10.1016/j.jpowsour.2012.12.102

    6. [6]

      Zhang, Y. T.; Liu, Z. J.; Wang, J. W.; Wang, L.; Peng, Z. Q. Acta Phys. -Chim. Sin. 2017, 33 (3), 486.  doi: 10.3866/PKU.WHXB201611181

    7. [7]

      Lin, D.; Liu, Y.; Cui, Y. Nat. Nanotechnol. 2017, 12 (3), 194. doi: 10.1038/nnano.2017.16  doi: 10.1038/nnano.2017.16

    8. [8]

      Cheng, X. B.; Zhang, R.; Zhao, C. Z.; Zhang, Q. Chem. Rev. 2017, doi: 10.1021/acs.chemrev.7b00115  doi: 10.1021/acs.chemrev.7b00115

    9. [9]

      Lang, J.; Qi, L.; Luo, Y.; Wu, H. Energy Storage Mater. 2017, 7, 115. doi: 10.1016/j.ensm.2017.01.006  doi: 10.1016/j.ensm.2017.01.006

    10. [10]

      Zheng, J.; Engelhard, M. H.; Mei, D.; Jiao, S.; Polzin, B. J.; Zhang, J. G.; Xu, W. Nat. Energy 2017, 2 (3), 17012. doi: 10.1038/nenergy.2017.12  doi: 10.1038/nenergy.2017.12

    11. [11]

      Liu, F. Q.; Wang, W. P.; Yin, Y. X.; Zhang, S. F.; Shi, J. L.; Wang, L.; Zhang, X.; Zheng, Y.; Zhou, J.; Li, L.; et al. Sci. Adv. 2018, 4 (10), 1. doi: 10.1126/sciadv.aat5383  doi: 10.1126/sciadv.aat5383

    12. [12]

      Cha, E.; Patel, M. D.; Park, J.; Hwang, J.; Prasad, V.; Cho, K.; Choi, W. Nat. Nanotechnol. 2018. doi: 10.1038/s41565-018-0061-y  doi: 10.1038/s41565-018-0061-y

    13. [13]

      Lopez, J; Pei, A.; Oh, J. Y.; Wang, G. J. N.; Cui, Y.; Bao, Z. N. J. Am. Chem. Soc. 2018, 140, 11735. doi: 10.1021/jacs.8b06047  doi: 10.1021/jacs.8b06047

    14. [14]

      Xie, J.; Wang, J.; Lee, H. R.; Yan, K.; Li, Y.; Shi, F.; Huang, W.; Pei, A.; Chen, G.; Subbaraman, R.; et al. Sci. Adv. 2018, 4 (7), eaat5168. doi: 10.1126/sciadv.aat5168  doi: 10.1126/sciadv.aat5168

    15. [15]

      Liu, K.; Kong, B.; Liu, W.; Sun Y.; Song, M. S.; Chen, J.; Liu, Y.; Lin, D.; Pei A.; Cui Y. Joule 2018, 2, 1. doi: 10.1016/j.joule.2018.06.003  doi: 10.1016/j.joule.2018.06.003

    16. [16]

      Guo, Y.; Ouyang, Y.; Li, D.; Wei, Y.; Zhai, T.; Li, H. Energy Storage Mater. 2018, 2, 1. doi: 10.1016/j.ensm.2018.05.012  doi: 10.1016/j.ensm.2018.05.012

    17. [17]

      Wang, Y.; Shen, Y.; Du, Z.; Zhang, X.; Wang, K.; Zhang, H.; Kang, T.; Guo, F.; Liu, C.; Wu, X.; et al. J. Mater. Chem. A 2017, 5, 23434. doi: 10.1039/C7TA08531A  doi: 10.1039/C7TA08531A

    18. [18]

      Guo, F.; Wang, Y.; Kang, T.; Liu, C.; Shen, Y.; Lu, W.; Wu, X.; Chen, L. Energy Storage Mater. 2018, 15, 116. doi: 10.1016/j.ensm.2018.03.018  doi: 10.1016/j.ensm.2018.03.018

    19. [19]

      Shen X.; Tian Z.; Fan R.; Shao, L.; Zhang, D.; Cao, G.; Kou, L.; Bai, Y. J. Energy Chem. 2018, 27, 1067. doi: 10.1016/j.jechem.2017.12.012  doi: 10.1016/j.jechem.2017.12.012

    20. [20]

      Wang, J.; Chen, Z.; Guo, Y.; Huang, R.; Wang, J. J. Inorg. Mater. 2018, 33 (3), 313.  doi: 10.15541/jim20170145

    21. [21]

      Li, J. Y.; Li, G.; Zhang, J.; Yin, Y. X.; Yue, F.S.; Xu, Q.; Guo, Y. G. ACS Appl. Mater. Interfaces 2019, 11, 405. doi: 10.1021/acsami.8b20213  doi: 10.1021/acsami.8b20213

    22. [22]

      Yi, R.; Dai, F.; Gordin, M. L.; Chen, S.; Wang, D. H. Adv. Energy Mater. 2013, 3, 295. doi: 10.1002/aenm.201200857  doi: 10.1002/aenm.201200857

    23. [23]

      Wood, K. N.; Kazyak, E.; Chadwick, A. F.; Chen, K.; Zhang, J.; Thornton, K.; Dasgupta, N. P. ACS Cent. Sci. 2016, 2 (11), 790. doi: 10.1021/acscentsci.6b00260  doi: 10.1021/acscentsci.6b00260

    24. [24]

      Zhang, R.; Chen, X. R.; Chen, X.; Cheng, X.; Zhang, X.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2017, 129 (27), 7764. doi: 10.1002/ange.201702099  doi: 10.1002/ange.201702099

    25. [25]

      Aurbach, D. J. Power Sources 2000, 89 (2), 206. doi: 10.1016/s0378-7753(00)00431-6  doi: 10.1016/s0378-7753(00)00431-6

    26. [26]

      Liu, Y.; Lin, D.; Liang, Z.; Zhao, J.; Yan, K.; Cui, Y. Nat. Commun. 2016, 7, 10992. doi: 10.1038/ncomms10992  doi: 10.1038/ncomms10992

    27. [27]

      Zhao, J.; Lu, Z.; Liu, N.; Lee, H. W.; McDowell, M. T.; Cui, Y. Nat. Commun. 2014, 5, 5088. doi: 10.1038/ncomms6088  doi: 10.1038/ncomms6088

    28. [28]

      Zhao, J.; Zhou, G.; Yan, K.; Xie, J.; Li, Y.; Liao, L.; Jin, Y.; Liu, K.; Hsu, P. C.; Wang, J.; et al. Nat. Nanotechnol. 2017, 12, 993. doi: 10.1038/nnano.2017.129  doi: 10.1038/nnano.2017.129

  • 加载中
    1. [1]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    2. [2]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    3. [3]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    4. [4]

      Jiandong LiuZhijia ZhangKamenskii MikhailVolkov FilippEliseeva SvetlanaJianmin Ma . Research Progress on Cathode Electrolyte Interphase in High-Voltage Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2308048-0. doi: 10.3866/PKU.WHXB202308048

    5. [5]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    6. [6]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    7. [7]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    8. [8]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    9. [9]

      Caiyun JinZexuan WuGuopeng LiZhan LuoNian-Wu Li . Phosphazene-based flame-retardant artificial interphase layer for lithium metal batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100094-0. doi: 10.1016/j.actphy.2025.100094

    10. [10]

      Zhiyuan TONGZiyuan LIKe ZHANG . Three-dimensional porous collector based on Cu-Li6.4La3Zr1.4Ta0.6O12 composite layer for the construction of stable lithium metal anode. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 499-508. doi: 10.11862/CJIC.20240238

    11. [11]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    12. [12]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    13. [13]

      Jingshuo ZhangYue ZhaiZiyun ZhaoJiaxing HeWei WeiJing XiaoShichao WuQuan-Hong Yang . Research Progress of Functional Binders in Silicon-Based Anodes for Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306006-0. doi: 10.3866/PKU.WHXB202306006

    14. [14]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    15. [15]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    16. [16]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    17. [17]

      Changsheng AnTao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101

    18. [18]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    19. [19]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    20. [20]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

Metrics
  • PDF Downloads(5)
  • Abstract views(1304)
  • HTML views(100)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return