Citation: WANG Yizhou, LIU Yehong, XU Shouhong, LIU Honglai. Design and Synthesis of Multi-Responsive Copolymers for Drug Carrier[J]. Acta Physico-Chimica Sinica, ;2019, 35(8): 876-884. doi: 10.3866/PKU.WHXB201901019 shu

Design and Synthesis of Multi-Responsive Copolymers for Drug Carrier

  • Corresponding author: XU Shouhong, xushouhong@ecust.edu.cn
  • Received Date: 7 January 2019
    Revised Date: 20 February 2019
    Accepted Date: 21 February 2019
    Available Online: 28 August 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21776071, 51621002)the National Natural Science Foundation of China 51621002the National Natural Science Foundation of China 21776071

  • A copolymer P(MEO2MAm-co-OEGMAn)-b-PDPAp (poly[di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methacrylate]-b-poly[2-(diisopropylamino) ethyl methacrylate]) had been designed to have good stimuli-response for developing temperature/pH dual-responsive drug delivery systems. In this study, the copolymer was synthesized in two steps: atom transfer radical polymerization (ATRP) method, followed by the continuous ATRP method for P(MEO2MAm-co-OEGMAn) and P(MEO2MAm-co-OEGMAn)-b-PDPAp, respectively. The data of proton nuclear magnetic resonance spectroscopy (1H NMR) and gel permeation chromatography (GPC) showed that the chemical compositions of the two copolymers could be precisely controlled. The aqueous solution properties of the copolymers were investigated using a UV-visible spectrophotometer. Results showed that the former random copolymers had reversible temperature response, while the end product exhibited temperature/pH dual-responsive behaviors. Their lower critical solution temperatures (LCSTs) were found to be dependent on the ratios of the monomers. Firstly, the relationship between the monomer ratio and the low critical solution temperature (LCST) of P(MEO2MAm-co-OEGMAn) was investigated. It was found that within the range of the experimental study (m + n = 100, 0 < n < 30), the LCST of the copolymer showed a linear relationship with the number of OEGMA units in each polymer chain. Then, the proportion of the two monomers (MEO2MAm and OEGMA) was fixed (m = 90, n = 10) and the random terpolymer P(MEO2MAm-co-OEGMAn)-b-PDPAp was synthesized. The LCSTs of P(MEO2MAm-co-OEGMAn)-b-PDPAp were found to be highly dependent on the DPA unit numbers in the range of 15 < p < 30 while their pH trigger points were not related to the chemical composition of the P(MEO2MAm-co-OEGMAn)-b-PDPAp. Finally, the copolymer P(MEO2MA90-co-OEGMA10)-b-PDPA22 with a LCST of 43 ℃ and a pH trigger point of 6.5 was carefully selected for preparing micelles, as a nanocarrier of doxorubicin (DOX) for an in vitro release study. The in vitro release kinetics of copolymer micelles were studied under different conditions. At pH 7.4, which mimics the normal physiological condition, the total release amount of DOX at 37 ℃ was about 25%, which was much higher than that at a higher temperature of 45 ℃ (approximately 5%). However, at pH 5.0, which mimics the intracellular environment, the cumulative release of the DOX quickly reached 95% at 37 ℃, while the cumulative release of the drug at 45 ℃ was only about 65% in the same period of time. For the latter, a slow and sustained release was observed and the cumulative drug release amount reached about 85% in 30 h. These results showed that the environmental stimuli response of the copolymer determined the drug release behavior of the micelles. This copolymer-based drug carrier could be expected to undergo bursting and sustained drug release in response to different conditions. Therefore, the results show potential for applications in the design and preparation of controllable drug transportation systems.
  • 加载中
    1. [1]

      Kim, C. J.; Hu, X.; Park, S. J. J. Am. Chem. Soc. 2016, 138, 14941. doi:10.1021/jacs.6b07985  doi: 10.1021/jacs.6b07985

    2. [2]

      Park, W.; Park, S. J.; Cho, S.; Shin, H.; Jung, Y. S.; Lee, B.; Na, K.; Kim, D. H. J. Am. Chem. Soc. 2016, 138, 10734. doi:10.1021/jacs.6b04875  doi: 10.1021/jacs.6b04875

    3. [3]

      Wang, S.; Shen, Y.; Zhang, J.; Xu, S.; Liu, H. Phys. Chem. Chem. Phys. 2016, 18, 10129. doi:10.1039/c6cp00378h  doi: 10.1039/c6cp00378h

    4. [4]

      Hao, W.; Han, X.; Shang, Y.; Xu, S.; Liu, H. Colloid Surface B 2015, 136, 809. doi:10.1016/j.colsurfb.2015.10.033  doi: 10.1016/j.colsurfb.2015.10.033

    5. [5]

      Popescu, M. T.; Mourtas, S.; Pampalakis, G.; Antimisiaris, S. G.; Tsitsilianis, C. Biomacromolecules 2011, 12, 3023. doi:10.1021/bm2006483  doi: 10.1021/bm2006483

    6. [6]

      Gao, Y.; Ahiabu, A.; Serpe, M. J. ACS Appl. Mater. Interfaces 2014, 6, 13749. doi:10.1021/am503200p  doi: 10.1021/am503200p

    7. [7]

      Kang, H.; Trondoli, A. C.; Zhu, G.; Chen, Y.; Chang, Y. J.; Liu, H.; Huang, Y. F.; Zhang, X.; Tan, W. ACS Nano 2011, 5, 5094. doi:10.1021/nn201171r  doi: 10.1021/nn201171r

    8. [8]

      Bao, C.; Zhu, L.; Lin, Q.; Tian, H. Adv. Mater. 2015, 27, 1647. doi:10.1002/adma.201403783  doi: 10.1002/adma.201403783

    9. [9]

      Shen, N.; Lei, B.; Wang, Y.; Xu, S.; Liu, H. New J. Chem. 2018, 42, 9472. doi:10.1039/c8nj00392k  doi: 10.1039/c8nj00392k

    10. [10]

      Rizzitelli, S.; Giustetto, P.; Cutrin, J. C.; Delli Castelli, D.; Boffa, C.; Ruzza, M.; Menchise, V.; Molinari, F.; Aime, S.; Terreno, E. J. Control. Release 2015, 202, 21. doi:10.1016/j.jconrel.2015.01.028  doi: 10.1016/j.jconrel.2015.01.028

    11. [11]

      Zhao, W.; Odelius, K.; Edlund, U.; Zhao, C.; Albertsson, A. C. Biomacromolecules 2015, 16, 2522. doi:10.1021/acs.biomac.5b00801  doi: 10.1021/acs.biomac.5b00801

    12. [12]

      Ge, J.; Neofytou, E.; Cahill, T. J.; Beygui, R. E.; Zare, R. N. ACS Nano 2011, 6, 227. doi:10.1021/nn203430m  doi: 10.1021/nn203430m

    13. [13]

      Hoare, T.; Timko, B. P.; Santamaria, J.; Goya, G. F.; Irusta, S.; Lau, S.; Stefanescu, C. F.; Lin, D.; Langer, R.; Kohane, D. S. Nano Lett. 2011, 11, 1395. doi:10.1021/nl200494t  doi: 10.1021/nl200494t

    14. [14]

      Maeda, H. Bioconjugate Chem. 2010, 21, 797. doi:10.1021/bc100070g  doi: 10.1021/bc100070g

    15. [15]

      Danhier, F.; Feron, O.; Preat, V. J. Control. Release 2010, 148, 135. doi:10.1016/j.jconrel.2010.08.027  doi: 10.1016/j.jconrel.2010.08.027

    16. [16]

      Meng, F.; Zhong, Z.; Feijen, J. Biomacromolecules 2009, 10, 197. doi:10.1021/bm801127d  doi: 10.1021/bm801127d

    17. [17]

      Singh, R. P.; Gangadharappa, H. V.; Mruthunjaya, K. J. Drug Deliv. Sci. Tec. 2017, 39, 166. doi:10.1016/j.jddst.2017.03.027  doi: 10.1016/j.jddst.2017.03.027

    18. [18]

      Drummond, D. C.; Zignani, M.; Leroux, J. C. Prog. Lipid Res. 2000, 39, 409. doi:10.1016/S0163-7827(00)00011-4  doi: 10.1016/S0163-7827(00)00011-4

    19. [19]

      De La Rica, R.; Aili, D.; Stevens, M. M. Adv. Drug Deliv. Rev. 2012, 64, 967. doi:10.1016/j.addr.2012.01.002  doi: 10.1016/j.addr.2012.01.002

    20. [20]

      Issels, R. D. Eur. J. Cancer 2008, 44, 2546. doi:10.1016/j.ejca.2008.07.038  doi: 10.1016/j.ejca.2008.07.038

    21. [21]

      Ding, Y.; Han, J.; Tian, B.; Han, J.; Zhang, J.; Zheng, H.; Han, Y.; Pei, M. Int. J. Pharm. 2014, 477, 187. doi:10.1016/j.ijpharm.2014.10.024  doi: 10.1016/j.ijpharm.2014.10.024

    22. [22]

      Li, Z. Y.; Liu, Y.; Hu, J. J.; Xu, Q.; Liu, L. H.; Jia, H. Z.; Chen, W. H.; Lei, Q.; Rong, L.; Zhang, X. Z. ACS Appl. Mater. Interfaces 2014, 6, 14568. doi:10.1021/am503846p  doi: 10.1021/am503846p

    23. [23]

      Guo, X.; Li, D.; Yang, G.; Shi, C.; Tang, Z.; Wang, J.; Zhou, S. ACS Appl. Mater. Interfaces 2014, 6, 8549. doi:10.1021/am501422r  doi: 10.1021/am501422r

    24. [24]

      Hao, W.; Liu, D.; Shang, Y.; Zhang, J.; Xu, S.; Liu, H. RSC Adv. 2016, 6, 29149. doi:10.1039/c6ra00673f  doi: 10.1039/c6ra00673f

    25. [25]

      Hao, W.; Xia, T.; Shang, Y.; Xu, S.; Liu, H. Colloid Polym. Sci. 2016, 294, 1107. doi:10.1007/s00396-016-3871-1  doi: 10.1007/s00396-016-3871-1

    26. [26]

      Lutz, J. F. J. Polym. Sci. Pol. Chem. 2008, 46, 3459. doi:10.1002/pola.22706  doi: 10.1002/pola.22706

    27. [27]

      Lutz, J. F.; Hoth, A. Macromolecules 2006, 39, 893. doi:10.1021/ma0517042  doi: 10.1021/ma0517042

    28. [28]

      París, R.; Quijada-Garrido, I.; GarcíA, O.; Liras, M. Macromolecules 2011, 44, 80. doi:10.1021/ma102189n  doi: 10.1021/ma102189n

  • 加载中
    1. [1]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    2. [2]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    3. [3]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    4. [4]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    5. [5]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    6. [6]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    7. [7]

      Ruiying WANGHui WANGFenglan CHAIZhinan ZUOBenlai WU . Three-dimensional homochiral Eu(Ⅲ) coordination polymer and its amino acid configuration recognition. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 877-884. doi: 10.11862/CJIC.20250052

    8. [8]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    9. [9]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    10. [10]

      Xingchao Zhao Xiaoming Li Ming Liu Zijin Zhao Kaixuan Yang Pengtian Liu Haolan Zhang Jintai Li Xiaoling Ma Qi Yao Yanming Sun Fujun Zhang . 倍增型全聚合物光电探测器及其在光电容积描记传感器上的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2311021-. doi: 10.3866/PKU.WHXB202311021

    11. [11]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    12. [12]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    13. [13]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    14. [14]

      Mingxin LULiyang ZHOUXiaoyu XUXiaoying FENGHui WANGBin YANJie XUChao CHENHui MEIFeng GAO . Preparation of La-doped lead-based piezoelectric ceramics with both high electrical strain and Curie temperature. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 329-338. doi: 10.11862/CJIC.20240206

    15. [15]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    16. [16]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    17. [17]

      Wanchun Zhu Yongmei Liu Li Wang Yunshan Bai Shu'e Song Xiaokui Wang Zhongyun Wu Hong Yuan Yunchao Li Fuping Tian Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement and Control of Temperature. University Chemistry, 2025, 40(5): 128-136. doi: 10.12461/PKU.DXHX202503028

    18. [18]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    19. [19]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    20. [20]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

Metrics
  • PDF Downloads(8)
  • Abstract views(629)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return