Citation: HUANG Yanjie, LIAN Chao, ZHOU Jinyan, HUANG Zichen, KANG Xiaohong, HUANG Zhenyu, LI Xiaojing, CHEN Lin, GUAN Yan. Investigation of Excitation-, pH-, Metal Ion-, Temperature-, and Polarity-Dependent Fluorescence of Carbon Dots Derived from Silkworm Excrement[J]. Acta Physico-Chimica Sinica, ;2019, 35(11): 1267-1275. doi: 10.3866/PKU.WHXB201812053 shu

Investigation of Excitation-, pH-, Metal Ion-, Temperature-, and Polarity-Dependent Fluorescence of Carbon Dots Derived from Silkworm Excrement

  • Corresponding author: HUANG Yanjie, yjhuang@scm.com.cn GUAN Yan, yanguan@pku.edu.cn
  • Received Date: 30 December 2018
    Revised Date: 22 February 2019
    Accepted Date: 25 February 2019
    Available Online: 4 November 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (21204001), Technical Project of Guangdong Science and Technology Department, China (2017A040405034) and the Technical Project of Guangdong Provincial Bureau of Quality and Technical Supervision, China (2018ZJ02)

  • As a new fluorescent nanomaterial, carbon dots (CDs) have many advantages, such as uniform particle size distribution, good light stability, adjustable excitation-emission wavelength, and surface modification. Moreover, one of the fascinating characters of CDs is that they are considered to be low-toxic and eco-friendly alternatives in chemical and biological analyses. They have exhibited broad application prospects in the fields of analysis, detection, and bioimaging. Silkworm excrement is dried and easily available. A large number of hydroxyl and carboxyl compounds in silkworm excrement can be used as ideal starting materials for the preparation of CDs. Also, compounds containing nitrogen and sulfur in silkworm excrement can be used as nitrogen and sulfur sources; thus, when used in the preparation of CDs, silkworm excrement can impart many more unique properties to CDs. Nitrogen-containing CDs prepared by microwave synthesis have an average hydration diameter of 4.86 nm. Elemental analysis data show that the prepared CDs contained 59.84% carbon, 5.46% nitrogen, and 2.32% sulfur. XPS spectra reveals sulfur (2p), carbon (1s), nitrogen (1s), and oxygen (1s) in CDs. FTIR data demonstrate that the prepared CDs may contain hydroxyl, amino, carbonyl, sulfonic, ester, and ether functional groups as well as carbon-nitrogen structures. The XRD pattern of the CDs has a broader peak of the amorphous carbon phase at approximately 2θ = 24.6°, and only D bands (at ~1400 cm-1) can be obviously detected in the Raman spectra of CDs. The intensity of fluorescence emission peak of CDs increases first and then decreases with the increase in excitation wavelength. The maximum intensity of fluorescence emission shifts gradually with the red shift of the excitation wavelength, and the relationship between excitation and emission wavelengths is exponential. In the pH ranging from 2.18 to 10.24, the fluorescence emission intensity of CDs decreases gradually with the increase in pH, and the maximum fluorescence emission intensity shifts gradually with the increase in pH. There is a linear relationship between pH and maximum emission wavelength. The fluorescence emission intensity of CDs decreases gradually with the increase in metal ion concentration. Under neutral conditions, CDs can selectively detect Cu2+. Under acidic conditions, CDs can detect Cu2+, Fe3+, Al3+, Ni2+, and Fe2+ separately without interference from other ions. There is a Stern-Volmer linear relationship between metal ion concentration and fluorescence intensity. The intensity of the fluorescence emission peak of CDs decreases with the increase in temperature, which may be due to the non-radiative transition process caused by molecular thermal motion. There is a linear relationship between temperature and fluorescence intensity. The maximum fluorescence emission intensity of CDs gradually shifts with the increase in polarity of the dispersed solvents. There is a linear relationship between fluorescence intensity and empirical constant ET of solvent polarity. Compared with the reported CDs prepared from natural products, silkworm-excrement-based CDs have abundant surface groups although they do not have an obvious crystal structure, which makes them have excellent response to various environmental factors (pH, temperature, ion concentration, temperature, solvent polarity, etc.) in a wide range. Above all, the fluorescence property changes with multiple environmental parameters will facilitate a broad application of silkworm-excrement-based CDs in biodetection and imaging.
  • 加载中
    1. [1]

      Wang, R.; Lu, K. Q.; Tang, Z. R.; Xu, Y. J. J. Mater. Chem. A 2017, 5 (8), 3717. doi: 10.1039/C6TA08660H  doi: 10.1039/C6TA08660H

    2. [2]

      Li, S. H.; Weng, B.; Lu, K. Q.; Xu, Y. J. Acta Phys. -Chim. Sin. 2018, 34 (6), 708.  doi: 10.3866/PKU.WHXB201710162

    3. [3]

      Lu, K. Q.; Quan, Q.; Zhang, N.; Xu, Y. J. J. Energy Chem. 2016, 25 (6), 927. doi: 10.1016/j.jechem.2016.09.015  doi: 10.1016/j.jechem.2016.09.015

    4. [4]

      Wang, X.; Cao, L.; Lu, F. S.; Meziani, M. J.; Li, H. T.; Qi, G.; Zhou, B.; Harruff, B. A.; Kermarrec, F.; Sun, Y. P. Chem. Commun. 2009, 46 (25), 3774. doi: 10.1039/B906252A  doi: 10.1039/B906252A

    5. [5]

      Kumar, A.; Chowdhuri, A. R.; Laha, D.; Mahto, T. K.; Karmakar, P.; Sahu, S. K. Sensor Actuat. B-Chem. 2017, 242, 679. doi: 10.1016/j.snb. 2016.11.109  doi: 10.1016/j.snb.2016.11.109

    6. [6]

      Ge, J. C.; Jia, Q. Y.; Liu, W. M.; Guo, L.; Liu, Q. Y.; Lan, M. H.; Zhang, H. Y.; Meng, X. M.; Wang, P. F. Adv. Mater. 2015, 27 (28), 4169. doi: 10.1002/adma. 201500323  doi: 10.1002/adma.201500323

    7. [7]

      Lin, F.; He, W. N.; Guo, X. Q. Adv. Mater. Res. 2011, 415-417, 1319. doi: 10.4028/www.scientific.net/AMR.415-417.1319  doi: 10.4028/www.scientific.net/AMR.415-417.1319

    8. [8]

      Lin, F.; Pei, D. J.; He, W. N.; Huang, Z. X.; Huang, Y. J.; Guo, X. Q. J. Mater. Chem. 2012, 22 (23), 11801. doi: 10.1039/c2jm31191g  doi: 10.1039/c2jm31191g

    9. [9]

      Anjana, R. R.; Anjali Devi, J. S.; Jayasree, M.; Aparna, R. S.; Aswathy, B.; Praveen, G. L.; Lekha, G. M.; Sony, G. Microchim. Acta 2018, 185 (1), 11. doi: 10.1007/s00604-017-2574-8  doi: 10.1007/s00604-017-2574-8

    10. [10]

      Jiang, K.; Sun, S.; Zhang, L.; Lu, Y.; Wu, A. G; Cai, C. Z.; Lin, H. W. Angew. Chem. Int. Edit. 2015, 54 (18), 5360. doi: 10.1002/ange.201501193  doi: 10.1002/ange.201501193

    11. [11]

      Wang, X. D.; Wolfbeis, O. S.; Meier, R. J. Chem. Soc. Rev. 2013, 42 (19), 7834. doi: 10.1039/c3cs60102a  doi: 10.1039/c3cs60102a

    12. [12]

      Zu, F. L.; Yan, F. Y.; Bai, Z. J.; Xu, J. X.; Wang, Y. Y.; Huang, Y. C.; Zhou, X. G. Microchim. Acta 2017, 184 (7), 1899. doi: 10.1007/s00604-017-2318-9  doi: 10.1007/s00604-017-2318-9

    13. [13]

      Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. J. Am. Chem. Soc. 2006, 128 (24), 7756. doi: 10.1021/ja062677d  doi: 10.1021/ja062677d

    14. [14]

      Yang, S. T.; Wang, X.; Wang, H. F.; Lu, F. S.; Luo, P. G.; Cao, L.; Meziani, M. J.; Liu, J. H.; Liu, Y. F.; Chen, M.; et al. J. Phys. Chem. C 2009, 113 (42), 18110. doi: 10.1021/jp9085969  doi: 10.1021/jp9085969

    15. [15]

      Dong, Y. Q.; Zhou, N. N.; Lin, X. M.; Lin J. P.; Chi, Y. W.; Chen, G. N. Chem. Mater. 2010, 22 (21), 5895. doi: 10.1021/cm1018844  doi: 10.1021/cm1018844

    16. [16]

      Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Chem. Mater. 2008, 20 (14), 4539. doi: 10.1021/cm800506r  doi: 10.1021/cm800506r

    17. [17]

      Lim, S. Y.; Shen, W.; Gao, Z. Q. Chem. Soc. Rev. 2015, 44 (1), 362. doi: 10.1039/C4CS00269E  doi: 10.1039/C4CS00269E

    18. [18]

      Balandin, A. A. Nat. Mater. 2011, 10 (8), 569. doi: 10.1038/nmat3064  doi: 10.1038/nmat3064

    19. [19]

      Zhou, J. J.; Sheng, Z. H.; Han, H. Y; Zou, M. Q.; Li, C. X. Mater. Lett. 2012, 66 (1), 222. doi: 10.1016/j.matlet.2011.08.081  doi: 10.1016/j.matlet.2011.08.081

    20. [20]

      Wang, L.; Zhou, H. S. Anal. Chem. 2014, 86 (18), 8902. doi: 10.1021/ac502646x  doi: 10.1021/ac502646x

    21. [21]

      Xu, J. Y.; Zhou, Y.; Liu, S. X.; Dong, M. T.; Huang, C. B. Anal. Methods 2014, 6 (7), 2086. doi: 10.1039/C3AY41715H  doi: 10.1039/C3AY41715H

    22. [22]

      Zhu, S. J.; Meng, Q. N.; Wang, L.; Zhang, J. H.; Song, Y. B.; Jin, H.; Zhang, K.; Sun, H. C.; Wang, H.; Yang, B. Angew. Chem. Int. Edit. 2013, 52 (14), 3953. doi: 10.1002/anie.201300519  doi: 10.1002/anie.201300519

    23. [23]

      Sun, D.; Ban, R.; Zhang P. H.; Wu G. H.; Zhang J. R.; Zhu J. J. Carbon 2013, 64 (11), 424. doi: 10.1016/j.carbon.2013.07.095.  doi: 10.1016/j.carbon.2013.07.095

    24. [24]

      Wang, J.; Wang, C. F.; Chen, S. Angew. Chem. Int. Edit. 2012, 51 (37), 9297. doi: 10.1002/anie.201204381  doi: 10.1002/anie.201204381

    25. [25]

      Liu, K. P.; Zhang, J. J.; Cheng, F. F.; Zheng, T. T.; Wang, C. M.; Zhu, J. J. J. Mater. Chem. 2011, 21 (32), 12034. doi: 10.1039/C1JM10749F  doi: 10.1039/C1JM10749F

    26. [26]

      Zong, J.; Yang, X. L.; Trinchi, A.; Hardin, S.; Cole, I.; Zhu, Y. H.; Li, C. Z.; Muster, T.; Wei, G. Biosens. Bioelectron. 2014, 51, 330. doi: 10.1016/j.bios.2013.07.042  doi: 10.1016/j.bios.2013.07.042

    27. [27]

      Wei, W. L.; Xu, C.; Ren, J. S.; Xu, B. L.; Qu, X. G. Chem. Commun. 2012, 48 (9), 1284. doi: 10.1039/C2CC16481G  doi: 10.1039/C2CC16481G

    28. [28]

      Tang, M. X.; Huang, Y. J.; Wang, Y.; Fu, L. M. Dalton T. 2015, 44 (16), 7449. doi: 10.1039/C5DT00611B  doi: 10.1039/C5DT00611B

    29. [29]

      Faustino, W. M.; Nunes, L. A.; Terra, I. A. A.; Felinto, M. C. F. C.; Brito, H. F.; Malta, O. L. J. Lumin. 2013, 137, 269. doi: 10.1016/j.jlumin. 2013.01.008  doi: 10.1016/j.jlumin.2013.01.008

    30. [30]

      Pan, D. Y.; Zhang, J. C.; Li, Z.; Wu, C.; Yan, X. M.; Wu, M. H. Chem. Commun. 2010, 46 (21), 3681. doi: 10.1039/C000114G  doi: 10.1039/C000114G

    31. [31]

      Paraknowitsch, J. P.; Zhang, Y. J.; Wienert, B.; Thomas, A. Chem. Commun. 2013, 49 (12), 1208. doi: 10.1039/c2cc37398j  doi: 10.1039/c2cc37398j

    32. [32]

      Liu, H.; Zhang, Y.; Liu, J. H.; Hou, P.; Zhou, J.; Huang, C. Z. RSC Adv. 2017, 7 (80), 50584. doi: 10.1039/C7RA10130A  doi: 10.1039/C7RA10130A

    33. [33]

      Wu, Z. L.; Zhang, P.; Gao, M. X.; Liu, C. F.; Wang, W.; Leng, F.; Huang, C. Z. J. Mater. Chem. B 2013, 1 (22), 2868. doi: 10.1039/C3TB20418A  doi: 10.1039/C3TB20418A

    34. [34]

      Zhu, L. L.; Yin, Y. J.; Wang, C. F.; Chen, S. J. Mater. Chem. C 2013, 1 (32), 4925. doi: 10.1039/C3TC30701H  doi: 10.1039/C3TC30701H

  • 加载中
    1. [1]

      Feng Lu Tao Wang Qi Wang . Preparation and Characterization of Water-Soluble Silver Nanoclusters: A New Design and Teaching Practice in Materials Chemistry Experiment. University Chemistry, 2025, 40(4): 375-381. doi: 10.12461/PKU.DXHX202406005

    2. [2]

      Lingqi Zhang Hairong Huang Jialin Li Li Ji Yufan Pan Meiling Ye Cuixue Chen Shunü Peng . 桂花碳量子点的绿色制备及科普应用方案. University Chemistry, 2025, 40(8): 298-306. doi: 10.12461/PKU.DXHX202409138

    3. [3]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    4. [4]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    5. [5]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    6. [6]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    7. [7]

      Chen LUQinlong HONGHaixia ZHANGJian ZHANG . Syntheses, structures, and properties of copper-iodine cluster-based boron imidazolate framework materials. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 149-154. doi: 10.11862/CJIC.20240407

    8. [8]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    9. [9]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    10. [10]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    11. [11]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    12. [12]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    13. [13]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    14. [14]

      Yuecheng ZHANGFan YANGShiyu ZHANGChengjun MARui TIANXuehua SUNHaoyu LILingbo SUNHongyan MA . B-doped carbon quantum dots with long-afterglow room-temperature phosphorescence: Applications in information encryption and humidity sensing. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1361-1370. doi: 10.11862/CJIC.20240415

    15. [15]

      Zian Fang Qianqian Wen Yidi Wang Hongxia Ouyang Qi Wang Qiuping Li . The Test Paper for Metal Ion: A Popular Science Experiment Based on Color Aesthetics. University Chemistry, 2024, 39(5): 108-115. doi: 10.3866/PKU.DXHX202310032

    16. [16]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    17. [17]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    18. [18]

      YanYuan Jia Rong Rong Jie Liu Jing Guo GuoYu Jiang Shuo Guo . Unity is Strength, and Independence Shines: A Science Popularization Experiment on AIE and ACQ Effects. University Chemistry, 2024, 39(9): 349-358. doi: 10.12461/PKU.DXHX202402035

    19. [19]

      Qin Li Kexin Yang Qinglin Yang Xiangjin Zhu Xiaole Han Tao Huang . Illuminating Chlorophyll: Innovative Chemistry Popularization Experiment. University Chemistry, 2024, 39(9): 359-368. doi: 10.3866/PKU.DXHX202309059

    20. [20]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

Metrics
  • PDF Downloads(14)
  • Abstract views(907)
  • HTML views(237)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return