Citation: LIU Hai, LI Yi, MA Zhaoxia, ZHOU Zhixuan, LI Junling, HE Yuanhang. Study on the Initial Decomposition Mechanism of Energetic Co-Crystal 2, 4, 6, 8, 10, 12-Hexanitro-2, 4, 6, 8, 10, 12-Hexaazaiso-Wurtzitane (CL-20)/1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazacy-Clooctane (HMX) under a Steady Shock Wave[J]. Acta Physico-Chimica Sinica, ;2019, 35(8): 858-867. doi: 10.3866/PKU.WHXB201812011 shu

Study on the Initial Decomposition Mechanism of Energetic Co-Crystal 2, 4, 6, 8, 10, 12-Hexanitro-2, 4, 6, 8, 10, 12-Hexaazaiso-Wurtzitane (CL-20)/1, 3, 5, 7-Tetranitro-1, 3, 5, 7-Tetrazacy-Clooctane (HMX) under a Steady Shock Wave

  • Corresponding author: LIU Hai, liumy2016@163.com HE Yuanhang, heyuanhang@bit.edu.cn
  • Received Date: 3 December 2018
    Revised Date: 15 January 2019
    Accepted Date: 25 January 2019
    Available Online: 28 August 2019

    Fund Project: The project was supported by the Advanced Research Fund in 13th Five-Year, China (Grant Number 6140656020204)the Advanced Research Fund in 13th Five-Year, China 6140656020204

  • CL-20 exhibits high energy density, but its high sensitivity limits its use in various applications. A high-energy and low-sensitivity co-crystal high explosive prepared around CL-20 has the potential to widen the application scope of CL-20 single crystals. The initial physical and chemical responses along different lattice vectors of the energetic co-crystal CL-20/HMX impacted by 4-10 km·s-1 of steady shock waves were simulated using the ReaxFF molecular dynamics method combined with the multiscale shock technique (MSST). The temperature, pressure, density, particle velocity, initial decomposition paths, final stable reaction products, and shock Hugoniot curves were obtained. The results show that after application of the shock wave, the energetic co-crystals successively undergo an induction period, fast compression, slow compression, and expansion processes. The fast and slow compression processes correspond to the fast and slow decomposition of the reactants, respectively. An exponential function was adopted to fit the decay curve of the reactants and the decay rates of CL-20 and HMX were compared. Overall, with increasing shock wave velocity, the response time of the reactants was gradually advanced and that of CL-20 molecular decomposition in the co-crystal occurred earlier than that of HMX after the shock wave incident along each lattice vector. The decay rate of CL-20 was highest during the fast decomposition stage, followed by that of HMX. However, the decay rate of the reactants during the slow decomposition stage was similar. The initial reaction path of the energetic co-crystal involves the dimerization of CL-20, while the initial reaction path of the shock-induced co-crystal decomposition involves fracturing of the N-NO2 bond in CL-20 to form NO2. Then, small intermediate molecules such as N2O, NO, HONO, OH, and H are formed. The final stable products are N2, H2O, CO2, CO, and H2. The shock sensitivities of the lattice vector in the b and c directions were the same, but lower than that of the lattice vector a direction. The minimum velocities (us) of the shock wave inducing CL-20 and HMX decomposition were 6 and 7 km·s-1, respectively. Moreover, the particle velocities behind the shock waves on the three lattice vectors showed only minor differences. The shock-induced initiation pressures of CL-20/HMX along lattice vectors a, b, and c were 16.52, 17.41, and 17.41 GPa, respectively, as determined by the shock Hugoniot relation. The detonation pressure ranged from 36.75 to 47.43 GPa.
  • 加载中
    1. [1]

      Cherukuvada, S.; Kaur, R.; Row, T. N. G. CrystEngComm 2016, 18, 8528. doi: 10.1039/C6CE01835A  doi: 10.1039/C6CE01835A

    2. [2]

      Ross, S. A.; Lamprou, D. A.; Douroumis, D. Chem. Commun. 2016, 52, 8772. doi: 10.1039/C6CC01289B  doi: 10.1039/C6CC01289B

    3. [3]

      Bolton, O.; Matzger, A. J. Angew. Chem. Int. Ed. 2011, 123, 9122. doi: 10.1002/ange.201104164  doi: 10.1002/ange.201104164

    4. [4]

      Bolton, O.; Simke, L. R.; Pagoria, P. F.; Matzger, A. J. Cryst. Growth Des. 2012, 12, 4311. doi: 10.1021/cg3010882  doi: 10.1021/cg3010882

    5. [5]

      Yang, Z.; Li, H.; Zhou, X.; Zhang, C.; Huang, H.; Li, J.; Nie, F. Cryst. Growth Des. 2012, 12, 5155. doi: 10.1021/cg300955q  doi: 10.1021/cg300955q

    6. [6]

      Xu, H.; Duan, X.; Li, H.; Pei, C. RSC Adv. 2015, 5, 95764. doi: 10.1039/C5RA17578J  doi: 10.1039/C5RA17578J

    7. [7]

      Wang, Y.; Yang, Z.; Li, H.; Zhou, X.; Zhang, Q.; Wang, J.; Liu, Y. Propell. Explos. Pyrotech. 2014, 39, 590. doi: 10.1002/prep.201300146  doi: 10.1002/prep.201300146

    8. [8]

      Huang, C.; Xu, J.; Tian, X.; Liu, J.; Pan, L.; Yang, Z.; Nie, F. Cryst. Growth Des. 2018, 18, 2121. doi: 10.1021/acs.cgd.7b01568  doi: 10.1021/acs.cgd.7b01568

    9. [9]

      Liu, N.; Duan, B.; Lu, X.; Mo, H.; Xu, M.; Zhang, Q.; Wang, B. CrystEngComm 2018, 20, 2060. doi: 10.1039/C8CE00006A  doi: 10.1039/C8CE00006A

    10. [10]

      Duan, B.; Shu, Y.; Liu, N.; Wang, B.; Lu, X.; Lu, Y. CrystEngComm 2018, 20, 5790. doi: 10.1039/C8CE01132J  doi: 10.1039/C8CE01132J

    11. [11]

      Urbelis, J. H.; Young, V. G.; Swift, J. A. CrystEngComm 2015, 17, 1564. doi: 10.1039/C4CE02285H  doi: 10.1039/C4CE02285H

    12. [12]

      Ma, Q.; Jiang, T.; Chi, Y.; Chen, Y.; Wang, J.; Huang, J.; Nie, F. New J. Chem. 2017, 41, 4165. doi: 10.1039/C6NJ03976F  doi: 10.1039/C6NJ03976F

    13. [13]

      Yang, Z.; Zeng, Q.; Zhou, X.; Zhang, Q.; Nie, F.; Huang, H.; Li, H. RSC Adv. 2014, 4, 65121. doi: 10.1039/C4RA12248H  doi: 10.1039/C4RA12248H

    14. [14]

      Zhang, C.; Cao, Y.; Li, H.; Zhou, Y.; Zhou, J.; Gao, T.; Zhang, H.; Yang, Z.; Jiang, G. CrystEngComm 2013, 15, 4003. doi: 10.1039/C3CE40112J  doi: 10.1039/C3CE40112J

    15. [15]

      Zhang, C.; Xue, X.; Cao, Y.; Zhou, J.; Zhang, A.; Li, H.; Zhou, Y.; Xu, R.; Gao, T. CrystEngComm 2014, 16, 5905. doi: 10.1039/C4CE00584H  doi: 10.1039/C4CE00584H

    16. [16]

      Wei, X.; Zhang, A.; Ma, Y.; Xue, X.; Zhou, J.; Zhu, Y.; Zhang, C. CrystEngComm 2015, 17, 9037. doi: 10.1039/C5CE02009C  doi: 10.1039/C5CE02009C

    17. [17]

      Zeng, Q.; Ma, Y.; Li, J.; Zhang, C. CrystEngComm 2017, 19, 2687. doi: 10.1039/C6CE02373H  doi: 10.1039/C6CE02373H

    18. [18]

      Zhang, L.; Wu, J. Z.; Jiang, S. L.; Yu, Y.; Chen, J. Phys. Chem. Chem. Phys. 2016, 18, 26960. doi: 10.1039/C6CP03526D  doi: 10.1039/C6CP03526D

    19. [19]

      Zhang, Z. B.; Li, T.; Yin, L.; Yin, X.; Zhang, J. G. RSC Adv. 2016, 6, 76075. doi: 10.1039/C6DT03960J  doi: 10.1039/C6DT03960J

    20. [20]

      Ma, Y.; Meng, L.; Li, H.; Zhang, C. CrystEngComm 2017, 19, 3145. doi: 10.1039/C7CE00529F  doi: 10.1039/C7CE00529F

    21. [21]

      Landenberger, K. B.; Matzger, A. J. Cryst. Growth Des. 2010, 10, 5341. doi: 10.1021/cg101300n  doi: 10.1021/cg101300n

    22. [22]

      Zhang, J.; Shreeve, J. M. CrystEngComm 2016, 18, 6124. doi: 10.1039/C6CE01239F  doi: 10.1039/C6CE01239F

    23. [23]

      Guo, D.; An, Q.; Zybin, S. V.; Goddard, W. A., Ⅲ.; Huang, F.; Tang, B. J. Mater. Chem. A 2015, 3, 5409. doi: 10.1039/C4TA06858K  doi: 10.1039/C4TA06858K

    24. [24]

      Guo, D.; An, Q.; Goddard, W. A., Ⅲ.; Zybin, S. V.; Huang, F. J. Phys. Chem. C 2014, 118, 30202. doi: 10.1021/jp5093527  doi: 10.1021/jp5093527

    25. [25]

      Zhang, X. Q.; Chen, X. R.; Kaliamurthi, S.; Selvaraj, G.; Ji, G. F.; Wei, D. Q. J. Phys. Chem. C 2018, 122, 24270. doi: 10.1021/acs.jpcc.8b06953  doi: 10.1021/acs.jpcc.8b06953

    26. [26]

      Qiu, H.; Patel, R. B.; Damavarapu, R. S.; Stepanov, V. CrystEngComm 2015, 17, 4080. doi: 10.1039/C5CE00489F  doi: 10.1039/C5CE00489F

    27. [27]

      Sun, S.; Zhang, H.; Liu, Y.; Xu, J.; Huang, S.; Wang, S.; Sun, J. Cryst. Growth Des. 2017, 18, 77. doi: 10.1021/acs.cgd.7b00775  doi: 10.1021/acs.cgd.7b00775

    28. [28]

      Ghosh, M.; Sikder, A. K.; Banerjee, S.; Gonnade, R. G. Cryst. Growth Des. 2018, 18, 3781. doi: 10.1021/acs.cgd.8b00015  doi: 10.1021/acs.cgd.8b00015

    29. [29]

      Sun, T.; Xiao, J. J.; Liu, Q.; Zhao, F.; Xiao, H. M. J. Mater. Chem. A 2014, 2, 13898. doi: 10.1039/C4TA01150C  doi: 10.1039/C4TA01150C

    30. [30]

      Liu, Z.; Wu, Q.; Zhu, W.; Xiao, H. RSC Adv. 2015, 5, 34216. doi: 10.1039/C5RA01829C  doi: 10.1039/C5RA01829C

    31. [31]

      Xue, X.; Ma, Y.; Zeng, Q.; Zhang, C. J. Phys. Chem. C 2017, 121, 4899. doi: 10.1021/acs.jpcc.7b00698  doi: 10.1021/acs.jpcc.7b00698

    32. [32]

      Okovytyy, S.; Kholod, Y.; Qasim, M.; Fredrickson, H.; Leszczynski, J. J. Phys. Chem. A 2005, 109, 2964. doi: 10.1021/jp045292v  doi: 10.1021/jp045292v

    33. [33]

      Isayev, O.; Gorb, L.; Qasim, M.; Leszczynski, J. J. Phys. Chem. B 2008, 112, 11005. doi: 10.1021/jp804765m  doi: 10.1021/jp804765m

    34. [34]

      Wang, F.; Chen, L.; Geng, D.; Wu, J.; Lu, J.; Wang, C. J. Phys. Chem. A 2018, 122, 3971. doi: 10.1021/acs.jpca.8b01256  doi: 10.1021/acs.jpca.8b01256

    35. [35]

      Xue, X.; Wen, Y.; Zhang, C. J. Phys. Chem. C 2016, 120, 21169. doi: 10.1021/acs.jpcc.6b05228  doi: 10.1021/acs.jpcc.6b05228

    36. [36]

      Ge, N. N.; Wei, Y. K.; Ji, G. F.; Chen, X. R.; Zhao, F.; Wei, D. Q. J. Phys. Chem. B 2012, 116, 13696. doi: 10.1021/jp309120t  doi: 10.1021/jp309120t

    37. [37]

      Ge, N. N.; Wei, Y. K.; Song, Z. F.; Chen, X. R.; Ji, G. F.; Zhao, F.; Wei, D. Q. J. Phys. Chem. B 2014, 118, 8691. doi: 10.1021/jp502432g  doi: 10.1021/jp502432g

    38. [38]

      Wen, Y.; Xue, X.; Zhou, X.; Guo, F.; Long, X.; Zhou, Y.; Li, H.; Zhang, C. J. Phys. Chem. C 2013, 117, 24368. doi: 10.1021/jp4072795  doi: 10.1021/jp4072795

    39. [39]

      Zhu, W.; Huang, H.; Huang, H.; Xiao, H. J. Chem. Phys. 2012, 136, 044516. doi: 10.1063/1.3679384  doi: 10.1063/1.3679384

    40. [40]

      Reed, E. J.; Fried, L. E.; Joannopoulos, J. D. Phys. Rev. Lett. 2003, 90, 235503. doi: 10.1103/PhysRevLett.90.235503  doi: 10.1103/PhysRevLett.90.235503

    41. [41]

      Reed, E. J.; Fried, L. E.; Henshaw, W. D.; Tarver, C. M. Phys. Rev. E 2006, 74, 056706. doi: 10.1103/PhysRevE.74.056706  doi: 10.1103/PhysRevE.74.056706

    42. [42]

      Reed, E. J.; Maiti, A.; Fried, L. E. Phys. Rev. E 2010, 81, 016607. doi: 10.1103/PhysRevE.81.016607  doi: 10.1103/PhysRevE.81.016607

    43. [43]

      Plimpton, S. J. J. Comput. Phys. 1995, 117, 1. doi: 10.1006/jcph.1995.10 39  doi: 10.1006/jcph.1995.1039

    44. [44]

      Liu, L.; Liu, Y.; Zybin, S. V.; Sun, H.; Goddard, W. A., Ⅲ. J. Phys. Chem. A 2011, 115, 11016. doi: 10.1021/jp201599t  doi: 10.1021/jp201599t

    45. [45]

      Van Duin, A. C.; Dasgupta, S.; Lorant, F.; Goddard, W. A. J. Phys. Chem. A 2001, 105, 9396. doi: 10.1021/jp004368u  doi: 10.1021/jp004368u

    46. [46]

      Chenoweth, K.; Van Duin, A. C. T.; Goddard, W. A. J. Phys. Chem. A 2008, 112, 1040. doi: 10.1021/jp709896w  doi: 10.1021/jp709896w

    47. [47]

      Zhou, T. T.; Huang, F, L. J. Phys. Chem. B. 2010, 115, 278. doi: 10.1021/jp105805w  doi: 10.1021/jp105805w

    48. [48]

      Liu, H.; Yang, Z.; He, Y. -H. Chin J Energ Mater. 2017, 25, 557.  doi: 10.11943/j.issn.1006-9941.2017.07.005

    49. [49]

      Zhang Y. -P.; Yang, Z.; Li, Q. -K.; He, Y. -H. Acta Chim. Sin. 2018, 76, 556.  doi: 10.6023/A18040153

    50. [50]

      Budzien, J.; Thompson, A. P.; Zybin, S. V. J. Phys. Chem. B 2009, 113, 13142. doi: 10.1021/jp9016695  doi: 10.1021/jp9016695

    51. [51]

      Holian, B. L. Shock Waves. 2004, 13, 489. doi: 10.1007/s00193-004-0226-5  doi: 10.1007/s00193-004-0226-5

    52. [52]

      He, Z. H.; Chen, J.; Ji, G. F.; Liu, L. M.; Zhu, W. J.; Wu, Q. J. Phys. Chem. B. 2015, 119, 10673. doi: 10.1021/acs.jpcb.5b05081  doi: 10.1021/acs.jpcb.5b05081

    53. [53]

      Ge, N. N.; Bai, S.; Chang, J.; Ji, G. F. RSC Adv. 2018, 8, 17312. doi: 10.1039/C8RA00409A  doi: 10.1039/C8RA00409A

    54. [54]

      Shan, T. R.; Wixom, R. R.; Mattsson, A. E.; Thompson, A. P. J. Phys. Chem. B 2013, 117, 928. doi: 10.1021/jp310473h  doi: 10.1021/jp310473h

    55. [55]

      He, Z. H.; Chen, J.; Wu, Q. J. Phys. Chem. C 2017, 121, 8227. doi: 10.1021/acs.jpcc.6b10354  doi: 10.1021/acs.jpcc.6b10354

    56. [56]

      Furman, D.; Kosloff, R.; Dubnikova, F.; Zybin, S. V.; Goddard, W. A., Ⅲ.; Rom, N.; Hirshberg, B.; Zeiri, Y. J. Am. Chem. Soc. 2014, 136, 4192. doi: 10.1021/ja410020f  doi: 10.1021/ja410020f

    57. [57]

      Engelke, R.; Blais, N. C.; Sheffield, S. A.; Sander, R. K. J. Phys. Chem. A 2001, 105, 6955. doi: 10.1021/jp010492h  doi: 10.1021/jp010492h

    58. [58]

      Marsh, S. P. In LASL Shock Hugoniot Data: Marsh, S. P. Ed.; University of California Press, Berkeley Los Angeles×London, 1980; p. 595.

    59. [59]

      Nomura, K. I.; Kalia, R. K.; Nakano, A.; Vashishta, P.; van Duin, A. C.; Goddard, W. A., Ⅲ. Phys. Rev. Lett. 2007, 99, 148303. doi: 10.1103/PhysRevLett.99.148303  doi: 10.1103/PhysRevLett.99.148303

    60. [60]

      Li, W. -X. In One-Dimensional Nonsteady Flow and Shock Waves; National Defense Industry Press: Beijing, 2003; pp. 212-215.

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    4. [4]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    5. [5]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    6. [6]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    7. [7]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    8. [8]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    9. [9]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    10. [10]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Yunxin Xu Wenbo Zhang Jing Yan Wangchang Geng Yi Yan . A Fascinating Saga of “Energetic Materials”. University Chemistry, 2024, 39(9): 266-272. doi: 10.3866/PKU.DXHX202307008

    13. [13]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    14. [14]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

    15. [15]

      Cuicui Yang Bo Shang Xiaohua Chen Weiquan Tian . Understanding the Wave-Particle Duality and Quantization of Confined Particles Starting from Classic Mechanics. University Chemistry, 2025, 40(3): 408-414. doi: 10.12461/PKU.DXHX202407066

    16. [16]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    17. [17]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    18. [18]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    19. [19]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    20. [20]

      Runze Xu Rui Liu . U-Pb Dating in the Age of Dinosaurs. University Chemistry, 2024, 39(9): 243-247. doi: 10.12461/PKU.DXHX202404083

Metrics
  • PDF Downloads(8)
  • Abstract views(586)
  • HTML views(91)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return