Citation: CHEN Fushan, ZHAO Songlin, YANG Tao, JIANG Taotao, NI Jun, ZHANG Qunfeng, LI Xiaonian. Highly Efficient Oxidative Dehydrogenation Aromatization of 1, 2, 3, 4-Tetrahydroquinoline by Cu2-MnOx Catalyst[J]. Acta Physico-Chimica Sinica, ;2019, 35(7): 775-786. doi: 10.3866/PKU.WHXB201811046 shu

Highly Efficient Oxidative Dehydrogenation Aromatization of 1, 2, 3, 4-Tetrahydroquinoline by Cu2-MnOx Catalyst

  • Corresponding author: ZHANG Qunfeng, zhangqf@zjut.edu.cn LI Xiaonian, xnli@zjut.edu.cn
  • Received Date: 30 November 2018
    Revised Date: 7 December 2018
    Accepted Date: 7 December 2018
    Available Online: 11 July 2018

    Fund Project: the National Natural Science Foundation of China 21776258the National Natural Science Foundation of China 21406199the National Natural Science Foundation of China 21566013the National Natural Science Foundation of China 21476207the National Natural Science Foundation of China 91534113the National Natural Science Foundation of China 21875220Program from Science and Technology Department of Zhejiang Province, China 2015C31042The project was supported by the National Natural Science Foundation of China (21776258, 21476207, 21566013, 21875220, 91534113, 21406199) and Program from Science and Technology Department of Zhejiang Province, China (2015C31042)

  • A novel template-free oxalate route was applied to synthesize a series of MnOx catalysts with different Cu content (MnOx, Cu1-MnOx, Cu2-MnOx, Cu3-MnOx, Cu4-MnOx, Cu2-450, and Cu2-550), which were then used in 1, 2, 3, 4-tetrahydroquinoline (THQL) oxidative dehydrogenation aromatization. To obtain insight into the structure-activity relationships of the catalysts, the samples were characterized by thermogravimetry and heat flow analysis, X-ray diffraction (XRD), N2 physical adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS), H2 temperature programmed reduction (H2-TPR), and atomic absorption spectroscopy (AAS). The results showed that Cu2-MnOx possesses the following characteristics: amorphous nature, high specific surface area, increased mesoporous average pore diameter, lower reduction temperature, highest Mn3+ and adsorbed oxygen content, and highest Mn3+/Mn4+ ratio among the seven manganese oxide catalysts. Cu2-MnOx for the oxidative dehydrogenation aromatization of THQL showed conversion (99.1%) and selectivity (97.2%) for quinoline under mild reaction conditions, with cheap air as oxidant and no alkali additive. Cu2-MnOx was reusable and achieved 95.8% conversion even after five reuse tests. Selectivity decreased slightly with the increase in reuse time, which could be attributed to the leaching of the Cu element. Comparison of structure-activity relationships showed increased catalytic activity when Mn3+ and adsorbed oxygen content were highest among these amorphous manganese oxides. Mn4+ content was related to the formation of quinoline N-oxide by over oxidation. Despite their high Mn3+ content and Mn3+/Mn4+ ratio, Cu2-450 and Cu2-550 had reduced surface area, adsorbed oxygen content, and lattice oxygen mobility, which resulted in poor catalytic performance. Although Cu3-MnOx had the largest BET surface area, highest lattice oxygen mobility, and similar Mn3+ and adsorbed oxygen content as Cu2-MnOx, the smaller average pore diameter of Cu3-MnOx perhaps caused its conversion and selectivity to be similar to Cu2-MnOx. The amorphous nature, Mn3+ and adsorbed oxygen content, Mn3+/Mn4+ ratio, lattice oxygen mobility, and synergistic effect between CuO and MnOx were found to play key roles in catalytic performance. The absence of precious metals, the simple catalyst preparation process, the cheap air as the sole oxidant, no ligand and alkali, the mild reaction conditions, along with catalyst reusability and easy isolation of the aromatized products made our catalytic protocol both green and environmentally benign.
  • 加载中
    1. [1]

      Zhang, B.; Studer, A. Chem. Soc. Rev. 2015, 44, 3505. doi: 10.1039/C5CS00083A  doi: 10.1039/C5CS00083A

    2. [2]

      Deiters, A.; Martin, S. F. Chem. Rev. 2004, 104, 2199. doi: 10.1021/cr0200872  doi: 10.1021/cr0200872

    3. [3]

      Wu, J.; Talwar, D.; Johnston, S.; Yan, M.; Xiao, J. Angew. Chem. Int. Edit. 2013, 125, 7121. doi: 10.1002/ange.2013.00.292  doi: 10.1002/ange.2013.00.292

    4. [4]

      Yamaguchi, R.; Ikeda, C.; Takahashi, Y.; Fujita, K. -I. J. Am. Chem. Soc. 2009, 131, 8410. doi: 10.1021/ja9022623  doi: 10.1021/ja9022623

    5. [5]

      Muthaiah, S.; Hong, S. H. Adv. Synth. Catal. 2012, 354, 3045. doi: 10.1002/adsc.201200532  doi: 10.1002/adsc.201200532

    6. [6]

      Chakraborty, S.; Brennessel, W. W.; Jones, W. D. J. Am. Chem. Soc. 2014, 136, 8564. doi: 10.1021/ja504523b  doi: 10.1021/ja504523b

    7. [7]

      Kojima, M.; Kanai, M. Angew. Chem. Int. Edit. 2016, 55, 12224. doi: 10.1002/anie.2016.06.177  doi: 10.1002/anie.2016.06.177

    8. [8]

      Jawale, D. V.; Gravel, E.; Shah, N.; Dauvois, V.; Li, H.; Namboothiri, I. N. N.; Doris, E. Chem. -A Eur. J. 2015, 21, 7039. doi: 10.1002/chem.2015.00.148  doi: 10.1002/chem.2015.00.148

    9. [9]

      Yamaguchi, K.; Mizuno, N. Angew. Chem. Int. Edit. 2003, 42, 1480. doi: 10.1002/anie.200250779  doi: 10.1002/anie.200250779

    10. [10]

      Furukawa, S.; Suga, A.; Komatsu, T. Chem. Commun. 2014, 50, 3277. doi: 10.1039/C4CC00024B  doi: 10.1039/C4CC00024B

    11. [11]

      Amende, M.; Gleichweit, C.; Werner, K.; Schernich, S.; Zhao, W.; Lorenz, M. P. A.; Höfert, O.; Papp, C.; Koch, M.; Wasserscheid, P.; et al. ACS Catal. 2014, 4, 657. doi: 10.1021/cs400946x  doi: 10.1021/cs400946x

    12. [12]

      So, M. H.; Liu, Y.; Ho, C. M.; Che, C. M. Chem. -An Asian J. 2009, 4, 1551. doi: 10.1002/asia.200900261  doi: 10.1002/asia.200900261

    13. [13]

      Cui, X.; Li, Y.; Bachmann, S.; Scalone, M.; Surkus, A. E.; Junge, K.; Topf, C.; Beller, M. J. Am. Chem. Soc. 2015, 137, 10652. doi: 10.1021/jacs.5b05674  doi: 10.1021/jacs.5b05674

    14. [14]

      Damodara, D.; Arundhathi, R.; Likhar, P. R. Adv. Synth. Catal. 2014, 356, 189. doi: 10.1002/adsc.2013.00.453  doi: 10.1002/adsc.2013.00.453

    15. [15]

      Zhou, W.; Tao, Q.; Sun, F. A.; Cao, X.; Qian, J.; Xu, J.; He, M.; Chen, Q.; Xiao, J. J. Catal. 2018, 361, 1. doi: 10.1016/j.jcat.2018.01.030  doi: 10.1016/j.jcat.2018.01.030

    16. [16]

      Mullick, K.; Biswas, S.; Angeles-Boza, A. M.; Suib, S. L. Chem. Commun. 2017, 53, 2256. doi: 10.1039/C6CC09095H  doi: 10.1039/C6CC09095H

    17. [17]

      Shu, Z.; Chen, Y.; Huang, W.; Cui, X.; Zhang, L.; Chen, H.; Zhang, G.; Fan, X.; Wang, Y.; Tao, G.; et al. Appl. Catal. B 2013, 140141, 42. doi: 10.1016/j.apcatb.2013.03.030  doi: 10.1016/j.apcatb.2013.03.030

    18. [18]

      Ma, X.; Li, J.; Rankin, M. A.; Croll, L. M.; Dahn, J. R. Microporous Mesoporous Mater. 2017, 244, 192. doi: 10.1016/j.micromeso.2016.10.019  doi: 10.1016/j.micromeso.2016.10.019

    19. [19]

      Tang, W.; Wu, X.; Li, D.; Wang, Z.; Liu, G.; Liu, H.; Chen, Y. J. Mater. Chem. A 2014, 2, 2544. doi: 10.1039/C3TA13847J  doi: 10.1039/C3TA13847J

    20. [20]

      Yu, C.; Zhang, L.; Shi, J.; Zhao, J.; Gao, J.; Yan, D. Adv. Funct. Mater. 2008, 18, 1544. doi: 10.1002/adfm.200701052  doi: 10.1002/adfm.200701052

    21. [21]

      Sing, K. S. W.; Everett, D. H.; R. A. W. Haul; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure Appl. Chem. 1985, 57, 603.

    22. [22]

      Puzan, A. N.; Baumer, V. N.; Lisovytskiy, D. V.; Mateychenko, P. V. J. Solid State Chem. 2018, 260, 87. doi: 10.1016/j.jssc.2018.01.022  doi: 10.1016/j.jssc.2018.01.022

    23. [23]

      Donkova, B.; Mehandjiev, D. Thermochim. Acta 2004, 421, 141. doi: 10.1016/j.tca.2004.04.001  doi: 10.1016/j.tca.2004.04.001

    24. [24]

      Poyraz, A. S.; Kuo, C. H.; Biswas, S.; King'ondu, C. K.; Suib, S. L. Nat. Commun. 2013, 4, 2952. doi: 10.1038/ncomms3952  doi: 10.1038/ncomms3952

    25. [25]

      Tompsett, G. A.; Krogh, L.; Griffin, D. W.; Conner, W. C. Langmuir 2005, 21, 8214. doi: 10.1021/la050068y  doi: 10.1021/la050068y

    26. [26]

      Stebounova, L. V.; Gonzalez-Pech, N. I.; Peters, T. M.; Grassian, V. H. Environn Sci.-Nano 2018, 5, 696. doi: 10.1039/C7EN01046J  doi: 10.1039/C7EN01046J

    27. [27]

      Venkataswamy, P.; Rao, K. N.; Jampaiah, D.; Reddy, B. M. Appl. Catal. B 2015, 162, 122. doi: 10.1016/j.apcatb.2014.06.038  doi: 10.1016/j.apcatb.2014.06.038

    28. [28]

      Tan, W.; Guo, G.; Deng, J.; Xie, S.; Yang, H.; Jiang, Y.; Dai, H. Ind. Eng. Chem. Res. 2014, 53, 18452. doi: 10.1021/ie503784e  doi: 10.1021/ie503784e

    29. [29]

      Liu, Y.; Dai, H.; Deng, J.; Xie, S.; Yang, H.; Tan, W.; Han, W.; Jiang, Y.; Guo, G. J. Catal. 2014, 309, 408. doi: 10.1016/j.jcat.2013.10.019  doi: 10.1016/j.jcat.2013.10.019

    30. [30]

      Liu, G.; Sun, L.; Liu, J.; Wang, F.; Guild, C. J. Mol. Catal. 2017, 440, 148. doi: 10.1016/j.mcat.2017.07.017  doi: 10.1016/j.mcat.2017.07.017

    31. [31]

      Wu, X.; Fang, Z.; Pan, H.; Zheng, Y.; Jiang, D.; Ni, J.; Li, X. Catal. Sci. Technol. 2017, 7, 797. doi: 10.1039/C6CY02286C  doi: 10.1039/C6CY02286C

    32. [32]

      Biswas, S.; Mullick, K.; Chen, S. Y.; Kriz, D. A.; Shakil, M. D.; Kuo, C. H.; Angeles-Boza, A. M.; Rossi, A. R.; Suib, S. L. ACS Catal. 2016, 6, 5069. doi: 10.1021/acscatal.6b00717  doi: 10.1021/acscatal.6b00717

    33. [33]

      Kapteijn, F.; Singoredjo, L.; Andreini, A.; Moulijn, J. A. Appl. Catal. B 1994, 3, 173. doi: 10.1016/0926-3373(93)E0034-9  doi: 10.1016/0926-3373(93)E0034-9

    34. [34]

      Zhang, X.; Li, H.; Yang, Y.; Zhang, T.; Wen, X.; Liu, N.; Wang, D. J. Environ. Chem. Eng. 2017, 5, 5179. doi: 10.1016/j.jece.2017.09.059  doi: 10.1016/j.jece.2017.09.059

    35. [35]

      Qian, K.; Qian, Z.; Hua, Q.; Jiang, Z.; Huang, W. Appl. Surf. Sci. 2013, 273, 357. doi: 10.1016/j.apsusc.2013.02.043  doi: 10.1016/j.apsusc.2013.02.043

    36. [36]

      Biswas, S.; Poyraz, A. S.; Meng, Y.; Kuo, C. H.; Guild, C.; Tripp, H.; Suib, S. L. Appl. Catal. B 2015, 165, 731. doi: 10.1016/j.apcatb.2014.10.055  doi: 10.1016/j.apcatb.2014.10.055

    37. [37]

      Doornkamp, C.; Ponec, V. J. Mol. Catal. A: Chem. 2000, 162, 19. doi: 10.1016/S1381-1169(00)00319-8  doi: 10.1016/S1381-1169(00)00319-8

    38. [38]

      Biswas, S.; Dutta, B.; Mullick, K.; Kuo, C. H.; Poyraz, A. S.; Suib, S. L. ACS Catal. 2015, 5, 4394. doi: 10.1021/acscatal.5b00325  doi: 10.1021/acscatal.5b00325

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    5. [5]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Kaihui Huang Dejun Chen Xin Zhang Rongchen Shen Peng Zhang Difa Xu Xin Li . Constructing Covalent Triazine Frameworks/N-Doped Carbon-Coated Cu2O S-Scheme Heterojunctions for Boosting Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(12): 2407020-. doi: 10.3866/PKU.WHXB202407020

    17. [17]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    18. [18]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

Metrics
  • PDF Downloads(11)
  • Abstract views(710)
  • HTML views(87)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return