Tunable Reactivity of MNi12 (M = Fe, Co, Cu, Zn) Nanoparticles Supported on Graphitic Carbon Nitride in Methanation
- Corresponding author: CHU Wei, chuwei1965@scu.edu.cn
Citation:
HAN Mengru, ZHOU Yanan, ZHOU Xuan, CHU Wei. Tunable Reactivity of MNi12 (M = Fe, Co, Cu, Zn) Nanoparticles Supported on Graphitic Carbon Nitride in Methanation[J]. Acta Physico-Chimica Sinica,
;2019, 35(8): 850-857.
doi:
10.3866/PKU.WHXB201811040
Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Ottobliesner, B. L.; Schmittner, A.; Bard, E. Nature 2012, 484, 49. doi: 10.1038/nature10915
doi: 10.1038/nature10915
Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D. W.; Medinaelizade, M. Proc. Natl. Acad. Sci. USA 2006, 103, 14288. doi: 10.1073/pnas.0606291103
doi: 10.1073/pnas.0606291103
Younas, M.; Sohail, M.; Leong, L. K.; Bashir, M. J.; Sumathi, S. Int. J. Environ. Sci. Technol. 2016, 13, 1839. doi: 10.1007/s13762-016-1008-1
doi: 10.1007/s13762-016-1008-1
Izquierdo, M. T.; Gasquet, V.; Sansom, E.; Ojeda, M.; Garcia, S.; Maroto-Valer, M. M. Fuel 2018, 230, 45. doi: 10.1016/j.fuel.2018.05.041
doi: 10.1016/j.fuel.2018.05.041
Uytdenhouwen, Y.; Alphen, S. V.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A. Chem. Eng. J. 2018, 348, 557. doi: 10.1016/j.cej.2018.04.210
doi: 10.1016/j.cej.2018.04.210
Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Fuel 2016, 166, 276. doi: 10.1016/j.fuel.2015.10.111
doi: 10.1016/j.fuel.2015.10.111
Zheng, J.; Wang, C.; Chu, W.; Zhou, Y.; Köhler, K. Chemistryselect 2016, 1, 3197. doi: 10.1002/slct.201600651
doi: 10.1002/slct.201600651
Feng, Y.; Yang, W.; Chu, W. Int. J. Hydrog. Energy 2015, 2015, 1. doi: 10.1155/2015/795386.
doi: 10.1155/2015/795386
Martin, N. M.; Hemmingsson, F.; Wang, X.; Merte, L. R.; Hejral, U.; Johan, G.; Skoglundh, M.; Meira, D. M.; Dippel, A.; Gutowski, O. Catal. Sci. Technol. 2018, 8, 2686. doi: 10.1039/C8CY00516H
doi: 10.1039/C8CY00516H
Schoder, M.; Armbruster, U.; Martin, A. Chem. Ing. Tech. 2013, 85, 344. doi: 10.1002/cite.201200112
doi: 10.1002/cite.201200112
Gao, J.; Liu, Q.; Gu, F.; Liu, B.; Zhong, Z.; Su, F. RSC Adv. 2015, 5, 22759. doi: 10.1039/C4RA16114A
doi: 10.1039/C4RA16114A
Wang, Y.; Arandiyan, H.; Scott, J.; Dai, H.; Amal, R. Adv. Sustainable Syst. 2018, 2, 1700119. doi: 10.1002/adsu.201700119
doi: 10.1002/adsu.201700119
Wang, W.; Chu, W.; Wang, N.; Yang, W.; Jiang, C. Int. J. Hydrog. Energy 2016, 41, 967. doi: 10.1016/j.ijhydene.2015.11.133
doi: 10.1016/j.ijhydene.2015.11.133
Liu, J.; Li, C.; Wang, F.; He, S.; Chen, H.; Zhao, Y.; Wei, M.; Evans, D. G.; Duan, X. Catal. Sci. Technol. 2013, 3, 2627. doi: 10.1039/C3CY00355H
doi: 10.1039/C3CY00355H
Wang, W.; Li, X.; Zhang, Y.; Zhang, R.; Ge, H.; Bi, J.; Tang, M. Catal. Sci. Technol. 2017, 7, 4413. doi: 10.1039/C7CY01119A
doi: 10.1039/C7CY01119A
Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Coord. Chem. Rev. 2015, 312, 99. doi: 10.1016/j.ccr.2015.12.005
doi: 10.1016/j.ccr.2015.12.005
Baker, R. T. K.; Tauster, S. J.; Dumesic, J. A. Acc. Chem. Res. 1986, 20, 389. doi: 10.1021/ar00143a001
doi: 10.1021/ar00143a001
Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501
doi: 10.1126/science.1246501
Punetha, V. D.; Rana, S.; Yoo, H. J.; Chaurasia, A.; McLeskey, J. T., Jr.; Ramasamy, M. S.; Sahoo, N. G.; Cho, J. W. Prog. Polym. Sci. 2017, 67, 1. doi: 10.1016/j.progpolymsci.2016.12.010
doi: 10.1016/j.progpolymsci.2016.12.010
Zhao, Z.; Sun, Y.; Dong, F. Nanoscale 2014, 7, 15. doi: 10.1039/C4NR03008G
doi: 10.1039/C4NR03008G
Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849
doi: 10.1038/nmat1849
Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. ACS Nano 2010, 4, 2979. doi: 10.1021/nn1006495
doi: 10.1021/nn1006495
Li, P.; Wang, F.; Wei, S.; Li, X.; Zhou, Y. Phys. Chem. Chem. Phys. 2017, 19, 4405. doi: 10.1039/C6CP08409E
doi: 10.1039/C6CP08409E
Liu, Y.; Yang, S.; Yin, S. N.; Feng, L.; Zang, Y.; Xue, H. Chem. Eng. J. 2017, 334, 2401. doi: 10.1016/j.cej.2017.12.016
doi: 10.1016/j.cej.2017.12.016
Arandiyan, H.; Yuan, W.; Scott, J.; Mesgari, S.; Dai, H.; Amal, R. ACS Appl. Mater. Inter. 2018, 10, 16352. doi: 10.1021/acsami.8b00889
doi: 10.1021/acsami.8b00889
Liu, D.; Li, Y.; Kottwitz, M.; Yan, B.; Yao, S.; Gamalski, A.; Grolimund, D.; Safonova, O. V.; Nachtegaal, M.; Chen, J. G. ACS Catal. 2018, 8, 4120. doi: 10.1021/acscatal.8b00706
doi: 10.1021/acscatal.8b00706
Liu, Q.; Wang, S.; Zhao, G.; Yang, H.; Yuan, M.; An, X.; Zhou, H.; Qiao, Y.; Tian, Y. Int. J. Hydrog. Energy 2018, 43, 239. doi: 10.1016/j.ijhydene.2017.11.052
doi: 10.1016/j.ijhydene.2017.11.052
Yang, Z.; Wang, Q.; Shan, X.; Li, W.; Chen, G.; Zhu, H. J. Chem. Phys. 2015, 142, 346. doi: 10.1063/1.4907897
doi: 10.1063/1.4907897
Feng, J. J.; Chen, L. X.; Song, P.; Wu, X. L.; Wang, A. J.; Yuan, J. Int. J. Hydrog. Energy 2016, 41, 8839. doi: 10.1016/j.ijhydene.2016.03.108
doi: 10.1016/j.ijhydene.2016.03.108
Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37. doi: 10.1038/nchem.121
doi: 10.1038/nchem.121
Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461p
doi: 10.1021/jz201461p
Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015
doi: 10.1063/1.1316015
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/physrevlett.77.3865
doi: 10.1103/physrevlett.77.3865
Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495
doi: 10.1002/jcc.20495
Delley, B. Phys. Rev. B: Condens. Matter 2002, 66, 155125. doi: 10.1103/physrevb.66.155125
doi: 10.1103/physrevb.66.155125
Elsasser, C.; Fahnle, M.; Brandt, E. H.; Bohm, M. C. J. Phys. F-Metal. Phys. 1987, 17, 301. doi: 10.1088/0305-4608/17/11/006
doi: 10.1088/0305-4608/17/11/006
Sun, S.; Geng, Y.; Li, T.; Chen, S.; Yan, Y.; Hu, S. Corros. Sci. 2012, 63, 140. doi: 10.1016/j.corsci.2012.05.024
doi: 10.1016/j.corsci.2012.05.024
Kroke, E.; Schwarz, M.; Horathbordon, E.; Kroll, P.; Noll, B.; Norman, A. D. New J. Chem. 2002, 26, 508. doi: 10.1039/b111062b
doi: 10.1039/b111062b
Zhu, B.; Zhang, J.; Jiang, C.; Cheng, B.; Yu, J. Appl. Catal. B 2017, 207, 27. doi: 10.1016/j.apcatb.2017.02.020
doi: 10.1016/j.apcatb.2017.02.020
Cui, J.; Liang, S.; Wang, X.; Zhang, J. Mater. Chem. Phys. 2015, 161, 194. doi: 10.1016/j.matchemphys.2015.05.036
doi: 10.1016/j.matchemphys.2015.05.036
Bojdys, M. J.; Muller, J.; Antonietti, M.; Thomas, A. Chem. Eur. J. 2008, 14, 8177. doi: 10.1002/chem.200800190
doi: 10.1002/chem.200800190
Aspera, S. M. E.; David, M.; Kasai, H. Jpn. J. Appl. Phys. 2010, 49, 721. doi: 10.1143/jjap.49.115703
doi: 10.1143/jjap.49.115703
Ghosh, D.; Periyasamy, G.; Pandey, B.; Pati, S. K. J. Mater. Chem. C 2014, 2, 7943. doi: 10.1039/C4TC01385A
doi: 10.1039/C4TC01385A
Abdullahi, Y. Z.; Yoon, T. L.; Halim, M. M.; Hashim, M. R.; Jafri, M. Z. M.; Leng, L. T. Curr. Appl. Phys. 2016, 16, 809. doi: 10.1016/j.cap.2016.04.019
doi: 10.1016/j.cap.2016.04.019
Gao, G.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Am. Chem. Soc. 2016, 138, 6292. doi: 10.1021/jacs.6b02692
doi: 10.1021/jacs.6b02692
He, F.; Li, K.; Yin, C.; Wang, Y.; Tang, H.; Wu, Z. Carbon 2016, 114, 619. doi: 10.1016/j.carbon.2016.12.061
doi: 10.1016/j.carbon.2016.12.061
Zuo, H. W.; Lu, C. H.; Ren, Y. R.; Li, Y.; Zhang, Y. F.; Chen, W. K. Acta Phys. -Chim. Sin. 2016, 32, 1183.
doi: 10.3866/PKU.WHXB201603032
Zhu, B.; Zhang, L. M.; Xu, D.; Cheng, B.; Yu, J. J. CO2 Util. 2017, 21, 327. doi: 10.1016/j.jcou.2017.07.021
doi: 10.1016/j.jcou.2017.07.021
Ma, X.; Li, X.; Li, M.; Ma, X.; Yu, L.; Dai, Y. Appl. Surf. Sci. 2017, 414, 124. doi: 10.1016/j.apsusc.2017.04.019
doi: 10.1016/j.apsusc.2017.04.019
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Zixuan Zhu , Xianjin Shi , Yongfang Rao , Yu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954
Min Song , Qian Zhang , Tao Shen , Guanyu Luo , Deli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083
Xiao Li , Wanqiang Yu , Yujie Wang , Ruiying Liu , Qingquan Yu , Riming Hu , Xuchuan Jiang , Qingsheng Gao , Hong Liu , Jiayuan Yu , Weijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166
Xu Huang , Kai-Yin Wu , Chao Su , Lei Yang , Bei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720
Wei Chen , Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412
Yu-Hang Li , Shuai Gao , Lu Zhang , Hanchun Chen , Chong-Chen Wang , Haodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894
Jiajun Wang , Guolin Yi , Shengling Guo , Jianing Wang , Shujuan Li , Ke Xu , Weiyi Wang , Shulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050
Haodong Wang , Xiaoxu Lai , Chi Chen , Pei Shi , Houzhao Wan , Hao Wang , Xingguang Chen , Dan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473
Jiaxuan Wang , Tonghe Liu , Bingxiang Wang , Ziwei Li , Yuzhong Niu , Hou Chen , Ying Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900
Fengxing Liang , Yongzheng Zhu , Nannan Wang , Meiping Zhu , Huibing He , Yanqiu Zhu , Peikang Shen , Jinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461
Congyan Liu , Xueyao Zhou , Fei Ye , Bin Jiang , Bo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969
Huazhe Wang , Chenghuan Qiao , Chuchu Chen , Bing Liu , Juanshan Du , Qinglian Wu , Xiaochi Feng , Shuyan Zhan , Wan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244
Yue Li , Minghao Fan , Conghui Wang , Yanxun Li , Xiang Yu , Jun Ding , Lei Yan , Lele Qiu , Yongcai Zhang , Longlu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764
Xian-Fa Jiang , Chongyun Shao , Zhongwen Ouyang , Zhao-Bo Hu , Zhenxing Wang , You Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011
Ming Zhong , Xue Guo , Yang Liu , Kun Zhao , Hui Peng , Suijun Liu , Xiaobo Zhang . Molybdenum-glycerate@zeolitic imidazolate framework spheres derived hierarchical nitrogen-doped carbon-encapsulated bimetallic selenides heterostructures for improved lithium-ion storage. Chinese Chemical Letters, 2025, 36(5): 109873-. doi: 10.1016/j.cclet.2024.109873
Chong Liu , Nanthi Bolan , Anushka Upamali Rajapaksha , Hailong Wang , Paramasivan Balasubramanian , Pengyan Zhang , Xuan Cuong Nguyen , Fayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960
Linshan Peng , Qihang Peng , Tianxiang Jin , Zhirong Liu , Yong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891
Xiao-Hong Yi , Chong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094