Citation: HAN Mengru, ZHOU Yanan, ZHOU Xuan, CHU Wei. Tunable Reactivity of MNi12 (M = Fe, Co, Cu, Zn) Nanoparticles Supported on Graphitic Carbon Nitride in Methanation[J]. Acta Physico-Chimica Sinica, ;2019, 35(8): 850-857. doi: 10.3866/PKU.WHXB201811040 shu

Tunable Reactivity of MNi12 (M = Fe, Co, Cu, Zn) Nanoparticles Supported on Graphitic Carbon Nitride in Methanation

  • Corresponding author: CHU Wei, chuwei1965@scu.edu.cn
  • Received Date: 28 November 2018
    Revised Date: 11 January 2018
    Accepted Date: 11 January 2019
    Available Online: 16 August 2019

    Fund Project: This work is financially supported by the National Natural Science Foundation of China 21476145This work is financially supported by the National Natural Science Foundation of China (21476145)

  • As a unique two-dimensional material, graphitic carbon nitride (g-C3N4) has received significant attention for its particular electronic structure and chemical performance. Its instinctive defect can provide a stable anchoring site for metals, potentially improving the surface reactivity. Ni-based catalysts are economical but their activity for CO2 methanation is lower than that of noble metal catalysts. Ni nanoparticles (NPs) supported on a substrate can further enhance the stability and activity of catalysts. Based on the principles of strong metal-support interaction (SMSI) and the synergistic effect on an alloy, MNi12/g-C3N4 composites as novel catalysts are expected to improve stability and catalytic performance of Ni-based catalysts. The configurations are established with core-shell structures of MNi12 (M = Fe, Co, Cu, Zn) nanoparticles (NPs) supported on g-C3N4 in this work. In the CO2 methanation reaction, the reactivity of CO on slab (ECO) is a critical factor, which is relative to the catalytic activity. Thus, the catalytic reactivity of these complexes via CO adsorption were explored using density functional theory (DFT). The values of cohesive energy (Ecoh) for MNi12 NPs range from -39.90 eV to -34.82 eV, suggesting that the formation of these NPs is favored as per thermodynamics, and Ecoh and partial density of state (PDOS) reveal that the central M atom with the less filled d-shell interacts more strongly with surface Ni atoms. Therefore, ZnNi12 is the most unstable structure among all the studied alloy, and the synergistic effect is also the weakest among them. When MNi12 NPs are supported on the g-C3N4 substrate, the binding energies (Eb) vary from -9.40 eV to -8.39 eV, indicating that g-C3N4 is indeed a good material for stabilizing these NPs. The PDOS analysis of pure g-C3N4 suggests the sp2 dangling bonds of N atoms in g-C3N4 can stabilize these transition metal NPs. Furthermore, the results of CO adsorbed on MNi12 NPs and MNi12/g-C3N4 composites show that ECO and dCO reduced with the introduction of g-C3N4. According to the results of the analysis of the Hirshfeld charges and electrostatic potential (ESP), the reason is that CO obtains less electrons from MNi12 NPs after deposition on the g-C3N4 substrate, which lowers the reactivity of CO on catalysts. Additionally, the deformation charge density is analyzed to investigate the interaction between the NPs and g-C3N4. With the introduction of g-C3N4, charge redistribution indicates the strong metal-support interaction, which further reduces the CO adsorption energy. In summary, MNi12 supported on g-C3N4 exhibit not only high stability but also tunable reactivity in CO2 methanation. These changes are beneficial for CO2 methanation reaction.
  • 加载中
    1. [1]

      Shakun, J. D.; Clark, P. U.; He, F.; Marcott, S. A.; Mix, A. C.; Liu, Z.; Ottobliesner, B. L.; Schmittner, A.; Bard, E. Nature 2012, 484, 49. doi: 10.1038/nature10915  doi: 10.1038/nature10915

    2. [2]

      Hansen, J.; Sato, M.; Ruedy, R.; Lo, K.; Lea, D. W.; Medinaelizade, M. Proc. Natl. Acad. Sci. USA 2006, 103, 14288. doi: 10.1073/pnas.0606291103  doi: 10.1073/pnas.0606291103

    3. [3]

      Younas, M.; Sohail, M.; Leong, L. K.; Bashir, M. J.; Sumathi, S. Int. J. Environ. Sci. Technol. 2016, 13, 1839. doi: 10.1007/s13762-016-1008-1  doi: 10.1007/s13762-016-1008-1

    4. [4]

      Izquierdo, M. T.; Gasquet, V.; Sansom, E.; Ojeda, M.; Garcia, S.; Maroto-Valer, M. M. Fuel 2018, 230, 45. doi: 10.1016/j.fuel.2018.05.041  doi: 10.1016/j.fuel.2018.05.041

    5. [5]

      Uytdenhouwen, Y.; Alphen, S. V.; Michielsen, I.; Meynen, V.; Cool, P.; Bogaerts, A. Chem. Eng. J. 2018, 348, 557. doi: 10.1016/j.cej.2018.04.210  doi: 10.1016/j.cej.2018.04.210

    6. [6]

      Rönsch, S.; Schneider, J.; Matthischke, S.; Schlüter, M.; Götz, M.; Lefebvre, J.; Prabhakaran, P.; Bajohr, S. Fuel 2016, 166, 276. doi: 10.1016/j.fuel.2015.10.111  doi: 10.1016/j.fuel.2015.10.111

    7. [7]

      Zheng, J.; Wang, C.; Chu, W.; Zhou, Y.; Köhler, K. Chemistryselect 2016, 1, 3197. doi: 10.1002/slct.201600651  doi: 10.1002/slct.201600651

    8. [8]

      Feng, Y.; Yang, W.; Chu, W. Int. J. Hydrog. Energy 2015, 2015, 1. doi: 10.1155/2015/795386.  doi: 10.1155/2015/795386

    9. [9]

      Martin, N. M.; Hemmingsson, F.; Wang, X.; Merte, L. R.; Hejral, U.; Johan, G.; Skoglundh, M.; Meira, D. M.; Dippel, A.; Gutowski, O. Catal. Sci. Technol. 2018, 8, 2686. doi: 10.1039/C8CY00516H  doi: 10.1039/C8CY00516H

    10. [10]

      Schoder, M.; Armbruster, U.; Martin, A. Chem. Ing. Tech. 2013, 85, 344. doi: 10.1002/cite.201200112  doi: 10.1002/cite.201200112

    11. [11]

      Gao, J.; Liu, Q.; Gu, F.; Liu, B.; Zhong, Z.; Su, F. RSC Adv. 2015, 5, 22759. doi: 10.1039/C4RA16114A  doi: 10.1039/C4RA16114A

    12. [12]

      Wang, Y.; Arandiyan, H.; Scott, J.; Dai, H.; Amal, R. Adv. Sustainable Syst. 2018, 2, 1700119. doi: 10.1002/adsu.201700119  doi: 10.1002/adsu.201700119

    13. [13]

      Wang, W.; Chu, W.; Wang, N.; Yang, W.; Jiang, C. Int. J. Hydrog. Energy 2016, 41, 967. doi: 10.1016/j.ijhydene.2015.11.133  doi: 10.1016/j.ijhydene.2015.11.133

    14. [14]

      Liu, J.; Li, C.; Wang, F.; He, S.; Chen, H.; Zhao, Y.; Wei, M.; Evans, D. G.; Duan, X. Catal. Sci. Technol. 2013, 3, 2627. doi: 10.1039/C3CY00355H  doi: 10.1039/C3CY00355H

    15. [15]

      Wang, W.; Li, X.; Zhang, Y.; Zhang, R.; Ge, H.; Bi, J.; Tang, M. Catal. Sci. Technol. 2017, 7, 4413. doi: 10.1039/C7CY01119A  doi: 10.1039/C7CY01119A

    16. [16]

      Navalon, S.; Dhakshinamoorthy, A.; Alvaro, M.; Garcia, H. Coord. Chem. Rev. 2015, 312, 99. doi: 10.1016/j.ccr.2015.12.005  doi: 10.1016/j.ccr.2015.12.005

    17. [17]

      Baker, R. T. K.; Tauster, S. J.; Dumesic, J. A. Acc. Chem. Res. 1986, 20, 389. doi: 10.1021/ar00143a001  doi: 10.1021/ar00143a001

    18. [18]

      Bonaccorso, F.; Colombo, L.; Yu, G.; Stoller, M.; Tozzini, V.; Ferrari, A. C.; Ruoff, R. S.; Pellegrini, V. Science 2015, 347, 1246501. doi: 10.1126/science.1246501  doi: 10.1126/science.1246501

    19. [19]

      Punetha, V. D.; Rana, S.; Yoo, H. J.; Chaurasia, A.; McLeskey, J. T., Jr.; Ramasamy, M. S.; Sahoo, N. G.; Cho, J. W. Prog. Polym. Sci. 2017, 67, 1. doi: 10.1016/j.progpolymsci.2016.12.010  doi: 10.1016/j.progpolymsci.2016.12.010

    20. [20]

      Zhao, Z.; Sun, Y.; Dong, F. Nanoscale 2014, 7, 15. doi: 10.1039/C4NR03008G  doi: 10.1039/C4NR03008G

    21. [21]

      Geim, A. K.; Novoselov, K. S. Nat. Mater. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    22. [22]

      Golberg, D.; Bando, Y.; Huang, Y.; Terao, T.; Mitome, M.; Tang, C.; Zhi, C. ACS Nano 2010, 4, 2979. doi: 10.1021/nn1006495  doi: 10.1021/nn1006495

    23. [23]

      Li, P.; Wang, F.; Wei, S.; Li, X.; Zhou, Y. Phys. Chem. Chem. Phys. 2017, 19, 4405. doi: 10.1039/C6CP08409E  doi: 10.1039/C6CP08409E

    24. [24]

      Liu, Y.; Yang, S.; Yin, S. N.; Feng, L.; Zang, Y.; Xue, H. Chem. Eng. J. 2017, 334, 2401. doi: 10.1016/j.cej.2017.12.016  doi: 10.1016/j.cej.2017.12.016

    25. [25]

      Arandiyan, H.; Yuan, W.; Scott, J.; Mesgari, S.; Dai, H.; Amal, R. ACS Appl. Mater. Inter. 2018, 10, 16352. doi: 10.1021/acsami.8b00889  doi: 10.1021/acsami.8b00889

    26. [26]

      Liu, D.; Li, Y.; Kottwitz, M.; Yan, B.; Yao, S.; Gamalski, A.; Grolimund, D.; Safonova, O. V.; Nachtegaal, M.; Chen, J. G. ACS Catal. 2018, 8, 4120. doi: 10.1021/acscatal.8b00706  doi: 10.1021/acscatal.8b00706

    27. [27]

      Liu, Q.; Wang, S.; Zhao, G.; Yang, H.; Yuan, M.; An, X.; Zhou, H.; Qiao, Y.; Tian, Y. Int. J. Hydrog. Energy 2018, 43, 239. doi: 10.1016/j.ijhydene.2017.11.052  doi: 10.1016/j.ijhydene.2017.11.052

    28. [28]

      Yang, Z.; Wang, Q.; Shan, X.; Li, W.; Chen, G.; Zhu, H. J. Chem. Phys. 2015, 142, 346. doi: 10.1063/1.4907897  doi: 10.1063/1.4907897

    29. [29]

      Feng, J. J.; Chen, L. X.; Song, P.; Wu, X. L.; Wang, A. J.; Yuan, J. Int. J. Hydrog. Energy 2016, 41, 8839. doi: 10.1016/j.ijhydene.2016.03.108  doi: 10.1016/j.ijhydene.2016.03.108

    30. [30]

      Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37. doi: 10.1038/nchem.121  doi: 10.1038/nchem.121

    31. [31]

      Peterson, A. A.; Nørskov, J. K. J. Phys. Chem. Lett. 2012, 3, 251. doi: 10.1021/jz201461p  doi: 10.1021/jz201461p

    32. [32]

      Delley, B. J. Chem. Phys. 2000, 113, 7756. doi: 10.1063/1.1316015  doi: 10.1063/1.1316015

    33. [33]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/physrevlett.77.3865  doi: 10.1103/physrevlett.77.3865

    34. [34]

      Grimme, S. J. Comput. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495  doi: 10.1002/jcc.20495

    35. [35]

      Delley, B. Phys. Rev. B: Condens. Matter 2002, 66, 155125. doi: 10.1103/physrevb.66.155125  doi: 10.1103/physrevb.66.155125

    36. [36]

      Elsasser, C.; Fahnle, M.; Brandt, E. H.; Bohm, M. C. J. Phys. F-Metal. Phys. 1987, 17, 301. doi: 10.1088/0305-4608/17/11/006  doi: 10.1088/0305-4608/17/11/006

    37. [37]

      Sun, S.; Geng, Y.; Li, T.; Chen, S.; Yan, Y.; Hu, S. Corros. Sci. 2012, 63, 140. doi: 10.1016/j.corsci.2012.05.024  doi: 10.1016/j.corsci.2012.05.024

    38. [38]

      Kroke, E.; Schwarz, M.; Horathbordon, E.; Kroll, P.; Noll, B.; Norman, A. D. New J. Chem. 2002, 26, 508. doi: 10.1039/b111062b  doi: 10.1039/b111062b

    39. [39]

      Zhu, B.; Zhang, J.; Jiang, C.; Cheng, B.; Yu, J. Appl. Catal. B 2017, 207, 27. doi: 10.1016/j.apcatb.2017.02.020  doi: 10.1016/j.apcatb.2017.02.020

    40. [40]

      Cui, J.; Liang, S.; Wang, X.; Zhang, J. Mater. Chem. Phys. 2015, 161, 194. doi: 10.1016/j.matchemphys.2015.05.036  doi: 10.1016/j.matchemphys.2015.05.036

    41. [41]

      Bojdys, M. J.; Muller, J.; Antonietti, M.; Thomas, A. Chem. Eur. J. 2008, 14, 8177. doi: 10.1002/chem.200800190  doi: 10.1002/chem.200800190

    42. [42]

      Aspera, S. M. E.; David, M.; Kasai, H. Jpn. J. Appl. Phys. 2010, 49, 721. doi: 10.1143/jjap.49.115703  doi: 10.1143/jjap.49.115703

    43. [43]

      Ghosh, D.; Periyasamy, G.; Pandey, B.; Pati, S. K. J. Mater. Chem. C 2014, 2, 7943. doi: 10.1039/C4TC01385A  doi: 10.1039/C4TC01385A

    44. [44]

      Abdullahi, Y. Z.; Yoon, T. L.; Halim, M. M.; Hashim, M. R.; Jafri, M. Z. M.; Leng, L. T. Curr. Appl. Phys. 2016, 16, 809. doi: 10.1016/j.cap.2016.04.019  doi: 10.1016/j.cap.2016.04.019

    45. [45]

      Gao, G.; Jiao, Y.; Waclawik, E. R.; Du, A. J. Am. Chem. Soc. 2016, 138, 6292. doi: 10.1021/jacs.6b02692  doi: 10.1021/jacs.6b02692

    46. [46]

      He, F.; Li, K.; Yin, C.; Wang, Y.; Tang, H.; Wu, Z. Carbon 2016, 114, 619. doi: 10.1016/j.carbon.2016.12.061  doi: 10.1016/j.carbon.2016.12.061

    47. [47]

      Zuo, H. W.; Lu, C. H.; Ren, Y. R.; Li, Y.; Zhang, Y. F.; Chen, W. K. Acta Phys. -Chim. Sin. 2016, 32, 1183.  doi: 10.3866/PKU.WHXB201603032

    48. [48]

      Zhu, B.; Zhang, L. M.; Xu, D.; Cheng, B.; Yu, J. J. CO2 Util. 2017, 21, 327. doi: 10.1016/j.jcou.2017.07.021  doi: 10.1016/j.jcou.2017.07.021

    49. [49]

      Ma, X.; Li, X.; Li, M.; Ma, X.; Yu, L.; Dai, Y. Appl. Surf. Sci. 2017, 414, 124. doi: 10.1016/j.apsusc.2017.04.019  doi: 10.1016/j.apsusc.2017.04.019

  • 加载中
    1. [1]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    2. [2]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    3. [3]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    4. [4]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    5. [5]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    6. [6]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    7. [7]

      Wei Chen Pieter Cnudde . A minireview to ketene chemistry in zeolite catalysis. Chinese Journal of Structural Chemistry, 2024, 43(11): 100412-100412. doi: 10.1016/j.cjsc.2024.100412

    8. [8]

      Yu-Hang LiShuai GaoLu ZhangHanchun ChenChong-Chen WangHaodong Ji . Insights on selective Pb adsorption via O 2p orbit in UiO-66 containing rich-zirconium vacancies. Chinese Chemical Letters, 2024, 35(8): 109894-. doi: 10.1016/j.cclet.2024.109894

    9. [9]

      Jiajun WangGuolin YiShengling GuoJianing WangShujuan LiKe XuWeiyi WangShulai Lei . Computational design of bimetallic TM2@g-C9N4 electrocatalysts for enhanced CO reduction toward C2 products. Chinese Chemical Letters, 2024, 35(7): 109050-. doi: 10.1016/j.cclet.2023.109050

    10. [10]

      Haodong WangXiaoxu LaiChi ChenPei ShiHouzhao WanHao WangXingguang ChenDan Sun . Novel 2D bifunctional layered rare-earth hydroxides@GO catalyst as a functional interlayer for improved liquid-solid conversion of polysulfides in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108473-. doi: 10.1016/j.cclet.2023.108473

    11. [11]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    12. [12]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    13. [13]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    14. [14]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    15. [15]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    16. [16]

      Xian-Fa JiangChongyun ShaoZhongwen OuyangZhao-Bo HuZhenxing WangYou Song . Generating electron spin qubit in metal-organic frameworks via spontaneous hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109011-. doi: 10.1016/j.cclet.2023.109011

    17. [17]

      Ming ZhongXue GuoYang LiuKun ZhaoHui PengSuijun LiuXiaobo Zhang . Molybdenum-glycerate@zeolitic imidazolate framework spheres derived hierarchical nitrogen-doped carbon-encapsulated bimetallic selenides heterostructures for improved lithium-ion storage. Chinese Chemical Letters, 2025, 36(5): 109873-. doi: 10.1016/j.cclet.2024.109873

    18. [18]

      Chong LiuNanthi BolanAnushka Upamali RajapakshaHailong WangParamasivan BalasubramanianPengyan ZhangXuan Cuong NguyenFayong Li . Critical review of biochar for the removal of emerging inorganic pollutants from wastewater. Chinese Chemical Letters, 2025, 36(2): 109960-. doi: 10.1016/j.cclet.2024.109960

    19. [19]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    20. [20]

      Xiao-Hong YiChong-Chen Wang . Metal-organic frameworks on 3D interconnected macroporous sponge foams for large-scale water decontamination: A mini review. Chinese Chemical Letters, 2024, 35(5): 109094-. doi: 10.1016/j.cclet.2023.109094

Metrics
  • PDF Downloads(20)
  • Abstract views(440)
  • HTML views(65)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return