Citation: CHENG Zhenjie, MAO Yayun, DONG Qingyu, JIN Feng, SHEN Yanbin, CHEN Liwei. Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode[J]. Acta Physico-Chimica Sinica, ;2019, 35(8): 868-875. doi: 10.3866/PKU.WHXB201811033 shu

Fluoroethylene Carbonate as an Additive for Sodium-Ion Batteries: Effect on the Sodium Cathode

  • Corresponding author: SHEN Yanbin, ybshen2017@sinano.ac.cn
  • Received Date: 20 November 2018
    Revised Date: 9 December 2018
    Accepted Date: 10 December 2018
    Available Online: 12 August 2018

    Fund Project: the "Strategic Priority Research Program" of the CAS XDA09010600the National Natural Science Foundation of China 21733012the National Natural Science Foundation of China 21625304The project was supported by the Ministry of Science and Technology, China (2016YFB0100102), the "Strategic Priority Research Program" of the CAS (XDA09010600, XDA09010303), and the National Natural Science Foundation of China (21625304, 21733012)the "Strategic Priority Research Program" of the CAS XDA09010303the Ministry of Science and Technology, China 2016YFB0100102

  • Driven by the wide-scale implementation of intermittent renewable energy generating technologies, such as wind and solar, sodium-ion batteries have recently attracted attention as an inexpensive energy storage system due to the abundance, low cost, and relatively low redox potential of sodium. However, in comparison with lithium-ion batteries, which are known for long cycle life, sodium-ion batteries usually suffer from significant capacity fading during long-term cycling due to the large volume expansion/contraction of the electrode active materials caused by insertion/extraction of the large sodium ion. In recent years, intense effort has been focused on the search for high performance electrode materials and electrolytes to improve the cyclability of sodium-ion batteries, and some progress has been achieved. The incorporation of additives into the electrolyte is a simple and efficient method of improving the cycle stability of sodium-ion batteries. Fluoroethylene carbonate (FEC) is generally considered to be a suitable additive for the formation of the anode solid electrolyte interphase (SEI), due to a relatively low-lying lowest unoccupied molecular orbital (LUMO). However, it is suggested that FEC it will not be oxidized on the cathode since it also has a relatively low highest occupied molecular orbital (HOMO). In this study, we investigated the effect of FEC as an additive on the cycle life of a sodium-ion battery with a P2-NaxCo0.7Mn0.3O2 (x ≈ 1) layered sodium transition metal oxide as the cathode active material, a sodium metal foil anode, a glass fiber separator, and an electrolyte composed of NaClO4 and a varying mass content of FEC dissolved in propylene carbonate (PC). We analyzed the effect of the FEC additive on the morphology and chemical composition of the separator and cathode electrode surface using scanning electron microscopy (SEM), transmission electron microscopy (TEM), infrared spectroscopy, and X-ray photoelectron spectroscopy (XPS), and studied the evolution of the crystalline structure of the cathode active material during charge and discharge using in situ X-ray diffraction (XRD). We found that an appropriate amount of FEC additive significantly suppressed the decomposition of the PC solvent, and assisted the formation of a NaF-rich protective layer on the cathode surface, which helped to maintain the structural stability of the cathode material, thereby improving the cycle stability of the sodium-ion battery. Density functional theory (DFT) calculations showed that FEC coordinates more readily with the ClO4- anion on the cathode surface than does the PC solvent. This drives the formation of the NaF-rich protective layer on the cathode surface. We believe these results could provide inspiration in the design of electrolyte additives for protection of the sodium cathode during cycling, thus improving the cycling performance of sodium-ion batteries.
  • 加载中
    1. [1]

      Armand, M.; Tarascon, J. M. Nature 2008, 451, 652. doi: 10.1038/451652a  doi: 10.1038/451652a

    2. [2]

      Etacheri, V.; Marom, R.; Elazari, R.; Salitra, G.; Aurbach, D. Energy Environ. Sci. 2011, 4, 3243. doi: 10.1039/c1ee01598b  doi: 10.1039/c1ee01598b

    3. [3]

      Xu, K. Chem. Rev. 2014, 114, 11503. doi: 10.1021/cr500003w  doi: 10.1021/cr500003w

    4. [4]

      Hong, S. Y.; Kim, Y.; Park, Y.; Choi, A.; Choi, N. S.; Lee, K. T. Energy Environ. Sci. 2013, 6, 2067. doi: 10.1039/c3ee40811f  doi: 10.1039/c3ee40811f

    5. [5]

      Palomares, V.; Serras, P.; Villaluenga, I.; Hueso, K. B.; Carretero-Gonzalez, J.; Rojo, T. Energy Environ. Sci. 2012, 5, 5884. doi: 10.1039/c2ee02781j  doi: 10.1039/c2ee02781j

    6. [6]

      Yabuuchi, N.; Kajiyama, M.; Iwatate, J.; Nishikawa, H.; Hitomi, S.; Okuyama, R.; Usui, R.; Yamada, Y.; Komaba, S. Nat. Mater. 2012, 11, 512. doi: 10.1038/nmat3309  doi: 10.1038/nmat3309

    7. [7]

      Yuan, D.; Liang, X.; Wu, L.; Cao, Y.; Ai, X.; Feng, J.; Yang, H. Adv. Mater. 2014, 26, 6301. doi: 10.1002/adma.201401946  doi: 10.1002/adma.201401946

    8. [8]

      Fang, Y.; Xiao, L.; Ai, X.; Cao, Y.; Yang, H. Adv. Mater. 2015, 27, 5895. doi: 10.1002/adma.201502018  doi: 10.1002/adma.201502018

    9. [9]

      Fang, Y.; Xiao, L.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. Nano Lett. 2014, 14, 3539. doi: 10.1021/nl501152f  doi: 10.1021/nl501152f

    10. [10]

      Komaba, S.; Murata, W.; Ishikawa, T.; Yabuuchi, N.; Ozeki, T.; Nakayama, T.; Ogata, A.; Gotoh, K.; Fujiwara, K. Adv. Funct. Mater. 2011, 21, 3859. doi: 10.1002/adfm.201100854  doi: 10.1002/adfm.201100854

    11. [11]

      Cao, Y.; Xiao, L.; Sushko, M. L.; Wang, W.; Schwenzer, B.; Xiao, J.; Nie, Z.; Saraf, L. V.; Yang, Z.; Liu, J. Nano Lett. 2012, 12, 3783. doi: 10.1021/nl3016957  doi: 10.1021/nl3016957

    12. [12]

      Wu, L.; Lu, H.; Xiao, L.; Qian, J.; Ai, X.; Yang, H.; Cao, Y. J. Mater. Chem. A 2014, 2, 16424. doi: 10.1039/c4ta03365e  doi: 10.1039/c4ta03365e

    13. [13]

      Qu, B.; Ma, C.; Ji, G.; Xu, C.; Xu, J.; Meng, Y. S.; Wang, T.; Lee, J. Y. Adv. Mater. 2014, 26, 3854. doi: 10.1002/adma.201306314  doi: 10.1002/adma.201306314

    14. [14]

      Lee, Y.; Lee, J.; Kim, H.; Kang, K.; Choi, N. S. J. Power Sources 2016, 320, 49. doi: 10.1016/j.jpowsour.2016.04.070  doi: 10.1016/j.jpowsour.2016.04.070

    15. [15]

      Wrodnigg, G. H.; Besenhard, J. O.; Winter, M. J. Electrochem. Soc. 1999, 146, 470. doi: 10.1149/1.1391630  doi: 10.1149/1.1391630

    16. [16]

      Weadock, N.; Varongchayakul, N.; Wan, J.; Lee, S.; Seog, J.; Hu, L. Nano Energy 2013, 2, 713. doi: 10.1016/j.nanoen.2013.08.005  doi: 10.1016/j.nanoen.2013.08.005

    17. [17]

      Komaba, S.; Ishikawa, T.; Yabuuchi, N. ACS Appl. Mater. Interfaces 2011, 3, 4165. doi: 10.1021/am200973k  doi: 10.1021/am200973k

    18. [18]

      Ji, L.; Gu, M.; Shao, Y.; Li, X.; Engelhard, M. H.; Arey, B. W.; Wang, W.; Nie, Z.; Xiao, J.; Wang, C.; et al. Adv. Mater. 2014, 26, 2901. doi: 10.1002/adma.201304962  doi: 10.1002/adma.201304962

    19. [19]

      Xu, C.; Lindgren, F.; Philippe, B.; Gustafsson, T. Chem. Mater. 2015, 27, 2591. doi: 10.1021/acs.chemmater.5b00339  doi: 10.1021/acs.chemmater.5b00339

    20. [20]

      Horowitz, Y.; Han, H. L.; Soto, F. A.; Ralston, W. T.; Somorjai, G. A. Nano Lett. 2018, 18, 1145. doi: 10.1021/acs.nanolett.7b04688  doi: 10.1021/acs.nanolett.7b04688

    21. [21]

      Horowitz, Y.; Steinruck, H. G.; Han, H. L.; Cao, C.; Tsao, Y. Nano Lett. 2018, 18, 2105. doi: 10.1021/acs.nanolett.8b00298  doi: 10.1021/acs.nanolett.8b00298

    22. [22]

      Shen, Y.; Birgisson, S.; Iversen, B. B. J. Mater. Chem. A 2016, 4, 12281. doi: 10.1039/c6ta03630a  doi: 10.1039/c6ta03630a

    23. [23]

      Paulsen, J. M.; Dahn, J. R. Solid State Ionics 1999, 126, 3. doi: 10.1016/s0167-2738(99)00147-2  doi: 10.1016/s0167-2738(99)00147-2

    24. [24]

      Tang, W. J.; Peng, W. J.; Yan, G. C.; Guo, H. J.; Li, X. H.; Zhou, Y. Ionics 2017, 23, 3281. doi: 10.1007/s11581-017-2143-5  doi: 10.1007/s11581-017-2143-5

    25. [25]

      Gireaud, L.; Grugeon, S.; Laruelle, S.; Pilard, S.; Tarascon, J.-M. J.Electrochem. Soc. 2005, 152, A850. doi: 10.1149/1.1872673  doi: 10.1149/1.1872673

    26. [26]

      Aurbach, D.; Daroux, M. L.; Faguy, P. W.; Yeager, E. J. Electrochem. Soc. 1987, 134, 1611. doi: 10.1149/1.2100722  doi: 10.1149/1.2100722

    27. [27]

      Li, B.; Wang, Y.; Lin, H.; Liu, J.; Xing, L.; Xu, M.; Li, W. Electrochim. Acta 2014, 141, 263. doi: 10.1016/j.electacta.2014.07.085  doi: 10.1016/j.electacta.2014.07.085

    28. [28]

      A.N. Mansour, D.G. Kwabi, R.A. Quinlan, Y.-C. Lu, Y. Shao-Horn. J. Electrochem. Soc.2016, 163, A2911. doi: 10.1149/2.0331614jes  doi: 10.1149/2.0331614jes

    29. [29]

      Lindgren, F.; Xu, C.; Niedzicki, L.; Marcinek, M.; Gustafsson, T.; Bjorefors, F.; Edstrom, K.; Younesi, R. ACS Appl. Mater. Interfaces 2016, 8, 15758. doi: 10.1021/acsami.6b02650  doi: 10.1021/acsami.6b02650

    30. [30]

      Chen, X.; Li, X.; Mei, D.; Feng, J.; Hu, M. Y.; Hu, J.; Engelhard, M.; Zheng, J.; Xu, W.; Xiao, J.; Liu, J.; Zhang, J. G. ChemSusChem 2014, 7, 549. doi: 10.1002/cssc.201300770  doi: 10.1002/cssc.201300770

    31. [31]

      Lee, Y.; Lee, J.; Lee, J.; Kim, K.; Cha, A.; Kang, S.; Wi, T.; Kang, S. J.; Lee, H. W.; Choi, N. S. ACS Appli. Mater. Interfaces 2018, 10, 15270. doi: 10.1021/acsami.8b02446  doi: 10.1021/acsami.8b02446

    32. [32]

      Purushotham, U.; Takenaka, N.; Nagaoka, M. RSC Adv. 2016, 6, 65232. doi: 10.1039/c6ra09560g  doi: 10.1039/c6ra09560g

    33. [33]

      Li, J.; Li, W.; You, Y.; Manthiram, A. Adv. Energy Mater. 2018, 8. doi: 10.1002/aenm.201801957  doi: 10.1002/aenm.201801957

    34. [34]

      Liu, D.; Qian, K.; He, Y. B.; Luo, D.; Li, H.; Wu, M.; Kang, F.; Li, B. Electrochim. Acta 2018, 269, 378. doi: 10.1016/j.electacta.2018.02.151  doi: 10.1002/aenm.201801957

  • 加载中
    1. [1]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    2. [2]

      Jianbao Mei Bei Li Shu Zhang Dongdong Xiao Pu Hu Geng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5-xMn0.5V1.5-xZrx(PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    4. [4]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    5. [5]

      Yu Guo Zhiwei Huang Yuqing Hu Junzhe Li Jie Xu . 钠离子电池中铁基异质结构负极材料的最新研究进展. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-. doi: 10.3866/PKU.WHXB202311015

    6. [6]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    7. [7]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    8. [8]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    11. [11]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    12. [12]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    13. [13]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    14. [14]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    15. [15]

      Doudou Qin Junyang Ding Chu Liang Qian Liu Ligang Feng Yang Luo Guangzhi Hu Jun Luo Xijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-. doi: 10.3866/PKU.WHXB202310034

    16. [16]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    17. [17]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    18. [18]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

    19. [19]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    20. [20]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(32)
  • Abstract views(1533)
  • HTML views(283)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return