Recent Progress of Break Junction Technique in Single-Molecule Reaction Chemistry
- Corresponding author: Yang YANG, yangyang@xmu.edu.cn HONG Wenjing, whong@xmu.edu.cn
Citation:
YU Peikai, FENG Anni, ZHAO Shiqiang, WEI Junying, Yang YANG, SHI Jia, HONG Wenjing. Recent Progress of Break Junction Technique in Single-Molecule Reaction Chemistry[J]. Acta Physico-Chimica Sinica,
;2019, 35(8): 829-839.
doi:
10.3866/PKU.WHXB201811027
Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29 (2), 277. doi: 10.1016/0009-2614(74)85031-1
doi: 10.1016/0009-2614(74)85031-1
Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278 (5336), 252. doi: 10.1126/science.278.5336.252
doi: 10.1126/science.278.5336.252
Xu, B.; Tao, N. J. Science 2003, 301 (5637), 1221. doi: 10.1126/science.1087481
doi: 10.1126/science.1087481
Guo, X.; Small, J. P.; Klare, J. E.; Wang, Y.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L.; O'Brien, S.; et al. Science 2006, 311 (5759), 356. doi: 10.1126/science.1120986
doi: 10.1126/science.1120986
Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ. 2015, 36 (1), 9
doi: 10.7503/cjcu20140941
Ho Choi, S.; Kim, B.; Frisbie, C. D. Science 2008, 320 (5882), 1482. doi: 10.1126/science.1156538
doi: 10.1126/science.1156538
Cai, Z.; Lo, W.; Zheng, T.; Li, L.; Zhang, N.; Hu, Y.; Yu, L. J. Am. Chem. Soc. 2016, 138 (33), 10630. doi: 10.1021/jacs.6b05983
doi: 10.1021/jacs.6b05983
Zhen, S.; Mao, J. C.; Chen, L.; Ding, S.; Luo, W.; Zhou, X. S.; Qin, A.; Zhao, Z.; Tang, B. Z. Nano Lett. 2018, 18 (7), 4200. doi: 10.1021/acs.nanolett.8b01082
doi: 10.1021/acs.nanolett.8b01082
Chen, L.; Wang, Y. H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X. S.; Zhao, Z.; Tang, B. Z. Angew. Chem. Int. Ed. 2015, 54 (14), 4231. doi: 10.1002/anie.201411909
doi: 10.1002/anie.201411909
Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B.; et al. Science 2016, 352 (6292), 1443. doi: 10.1126/science.aaf6298
doi: 10.1126/science.aaf6298
Su, T. A.; Li, H.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Chem. 2015, 7, 215. doi: 10.1038/nchem.2180
doi: 10.1038/nchem.2180
Frisbie, C. D. Science 2016, 352 (6292), 1394. doi: 10.1126/science.aag0827
doi: 10.1126/science.aag0827
Wen, H.; Li, W.; Chen, J.; He, G.; Li, L.; Olson, M. A.; Sue, A. C. H.; Stoddart, J. F.; Guo, X. Sci. Adv. 2016, 2 (11), 1601113. doi: 10.1126/sciadv.1601113
doi: 10.1126/sciadv.1601113
Díez-Pérez, I.; Hihath, J.; Lee, Y.; Yu, L.; Adamska, L.; Kozhushner, M. A.; Oleynik, I. I.; Tao, N. Nat. Chem. 2009, 1, 635. doi: 10.1038/nchem.392
doi: 10.1038/nchem.392
Chen, X. P.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; del Barco, E.; Nijhuis, C. A. Nat. Nanotechnol. 2017, 12 (8), 797. doi: 10.1038/nnano.2017.110
doi: 10.1038/nnano.2017.110
Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116 (7), 4318. doi: 10.1021/acs.chemrev.5b00680
doi: 10.1021/acs.chemrev.5b00680
Tao, N. J. Nat. Nanotechnol. 2006, 1 (3), 173. doi: 10.1038/nnano.2006.130
doi: 10.1038/nnano.2006.130
Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Nat. Nanotechnol. 2009, 4, 230. doi: 10.1038/nnano.2009.10
doi: 10.1038/nnano.2009.10
Yang, G.; Wu, H.; Wei, J.; Zheng, J.; Chen, Z.; Liu, J.; Shi, J.; Yang, Y.; Hong, W. Chin. Chem. Lett. 2018, 29 (1), 147. doi: 10.1016/j.cclet.2017.06.015
doi: 10.1016/j.cclet.2017.06.015
Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904. doi: 10.1038/nature05037
doi: 10.1038/nature05037
Mao, J. C.; Peng, L. L.; Li, W. Q.; Chen, F.; Wang, H. G.; Shao, Y.; Zhou, X. S.; Zhao, X. Q.; Xie, H.; Niu, Z. J. J. Phys. Chem. C 2017, 121 (3), 1472. doi: 10.1021/acs.jpcc.6b10925
doi: 10.1021/acs.jpcc.6b10925
Martin, C. A.; Ding, D.; Sorensen, J. K.; Bjornholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. J. Am. Chem. Soc. 2008, 130 (40), 13198. doi: 10.1021/ja804699a
doi: 10.1021/ja804699a
Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; van Hemert, M. C.; van Ruitenbeek, J. M. Nature 2002, 419, 906. doi: 10.1038/nature01103
doi: 10.1038/nature01103
Kiguchi, M.; Miura, S.; Hara, K.; Sawamura, M.; Murakoshi, K. Appl. Phys. Lett. 2007, 91 (5), 053110. doi: 10.1063/1.2757592
doi: 10.1063/1.2757592
Yang, Y.; Liu, J.; Zheng, J.; Lu, M.; Shi, J.; Hong, W.; Yang, F.; Tian, Z. Nano Res. 2017, 10 (10), 3314. doi: 10.1007/s12274-017-1544-0
doi: 10.1007/s12274-017-1544-0
Li, Y.; Demir, F.; Kaneko, S.; Fujii, S.; Nishino, T.; Saffarzadeh, A.; Kirczenow, G.; Kiguchi, M. Phys. Chem. Chem. Phys. 2015, 17 (48), 32436. doi: 10.1039/c5cp05227k
doi: 10.1039/c5cp05227k
Peng, L. L.; Chen, F.; Hong, Z. W.; Zheng, J. F.; Fillaud, L.; Yuan, Y.; Huang, M. L.; Shao, Y.; Zhou, X. S.; Chen, J. Z.; et al. Nanoscale 2018, 10 (15), 7026. doi: 10.1039/c8nr00625c
doi: 10.1039/c8nr00625c
Hong, Z. W.; Aissa, M. A. B.; Peng, L. L.; Xie, H.; Chen, D. L.; Zheng, J. F.; Shao, Y.; Zhou, X. S.; Raouafi, N.; Niu, Z. J. Electrochem. Commun. 2016, 68, 86. doi: 10.1016/j.elecom.2016.05.002
doi: 10.1016/j.elecom.2016.05.002
Li, H. X.; Su, T. A.; Camarasa-Gomez, M.; Hernangomez-Perez, D.; Henn, S. E.; Pokorny, V.; Caniglia, C. D.; Inkpen, M. S.; Korytar, R.; Steigerwald, M. L.; et al. Angew. Chem. Int. Ed. 2017, 56 (45), 14145. doi: 10.1002/anie.201708524
doi: 10.1002/anie.201708524
Wang, Y. H.; Hong, Z. W.; Sun, Y. Y.; Li, D. F.; Han, D.; Zheng, J. F.; Niu, Z. J.; Zhou, X. S. J. Phys. Chem. C 2014, 118 (32), 18756. doi: 10.1021/jp505374v
doi: 10.1021/jp505374v
Guo, X. F.; Gorodetsky, A. A.; Hone, J.; Barton, J. K.; Nuckolls, C. Nat. Nanotechnol. 2008, 3 (3), 163. doi: 10.1038/nnano.2008.4
doi: 10.1038/nnano.2008.4
Zhou, C.; Li, X. X.; Gong, Z. L.; Jia, C. C.; Lin, Y. W.; Gu, C. H.; He, G.; Zhong, Y. W.; Yang, J. L.; Guo, X. F. Nat. Commun. 2018, 9, 807. doi: 10.1038/s41467-018-03203-1
doi: 10.1038/s41467-018-03203-1
Moreland, J.; Ekin, J. W. J. Appl. Phys. 1985, 58 (10), 3888. doi: 10.1063/1.335608
doi: 10.1063/1.335608
Xiang, D.; Jeong, H.; Lee, T.; Mayer, D. Adv. Mater. 2013, 25 (35), 4845. doi: 10.1002/adma.201301589
doi: 10.1002/adma.201301589
Wang, L.; Wang, L.; Zhang, L.; Xiang, D. Top. Current Chem. 2017, 375 (3), 61. doi: 10.1007/s41061-017-0149-0
doi: 10.1007/s41061-017-0149-0
Reichert, J.; Ochs, R.; Beckmann, D.; Weber, H. B.; Mayor, M.; Löhneysen, H. V. Phys. Rev. Lett. 2002, 88 (17), 176804. doi: 10.1103/PhysRevLett.88.176804
doi: 10.1103/PhysRevLett.88.176804
Yang, Y.; Gantenbein, M.; Alqorashi, A.; Wei, J.; Sangtarash, S.; Hu, D.; Sadeghi, H.; Zhang, R.; Pi, J.; Chen, L.; et al. J. Phys. Chem. C 2018, 122 (26), 14965. doi: 10.1021/acs.jpcc.8b03023
doi: 10.1021/acs.jpcc.8b03023
Sun, Y. Y.; Peng, Z. L.; Hou, R.; Liang, J. H.; Zheng, J. F.; Zhou, X. Y.; Zhou, X. S.; Jin, S.; Niu, Z. J.; Mao, B. W. Phys. Chem. Chem. Phys. 2014, 16 (6), 2260. doi: 10.1039/c3cp53269k
doi: 10.1039/c3cp53269k
Wen, H. M.; Yang, Y.; Zhou, X. S.; Liu, J. Y.; Zhang, D. B.; Chen, Z. B.; Wang, J. Y.; Chen, Z. N.; Tian, Z. Q. Chem. Sci. 2013, 4 (6), 2471. doi: 10.1039/C3SC50312G
doi: 10.1039/C3SC50312G
Liu, J.; Zhao, X.; Al-Galiby, Q.; Huang, X.; Zheng, J.; Li, R.; Huang, C.; Yang, Y.; Shi, J.; Manrique, D. Z.; et al. Angew. Chem. Int. Ed. 2017, 56 (42), 13061. doi: 10.1002/anie.201707710
doi: 10.1002/anie.201707710
Yang, G.; Sangtarash, S.; Liu, Z.; Li, X.; Sadeghi, H.; Tan, Z.; Li, R.; Zheng, J.; Dong, X.; Liu, J.; et al. Chem. Sci. 2017, 8 (11), 7505. doi: 10.1039/C7SC01014A
doi: 10.1039/C7SC01014A
Perrin, M. L.; Verzijl, C. J. O.; Martin, C. A.; Shaikh, A. J.; Eelkema, R.; van Esch, J. H.; van Ruitenbeek, J. M.; Thijssen, J. M.; van der Zant, H. S. J.; Dulić, D. Nat. Nanotechnol. 2013, 8, 282. doi: 10.1038/nnano.2013.26
doi: 10.1038/nnano.2013.26
Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462 (7276), 1039. doi: 10.1038/nature08639
doi: 10.1038/nature08639
Xiang, D.; Jeong, H.; Kim, D.; Lee, T.; Cheng, Y.; Wang, Q.; Mayer, D. Nano Lett. 2013, 13 (6), 2809. doi: 10.1021/nl401067x
doi: 10.1021/nl401067x
Aragonès, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Nature 2016, 531, 88. doi: 10.1038/nature16989
doi: 10.1038/nature16989
Zhang, L.; Laborda, E.; Darwish, N.; Noble, B. B.; Tyrell, J. H.; Pluczyk, S.; Le Brun, A. P.; Wallace, G. G.; Gonzalez, J.; Coote, M. L.; et al. J. Am. Chem. Soc. 2018, 140 (2), 766. doi: 10.1021/jacs.7b11628
doi: 10.1021/jacs.7b11628
Xiao, X. Y.; Xu, B. Q.; Tao, N. J. Nano Lett. 2004, 4 (2), 267. doi: 10.1021/nl035000m
doi: 10.1021/nl035000m
Darwish, N.; Díez-Pérez, I.; Da Silva, P.; Tao, N.; Gooding, J. J.; Paddon-Row, M. N. Angew. Chem. Int. Ed. 2012, 51 (13), 3203. doi: 10.1002/anie.201107765
doi: 10.1002/anie.201107765
Baghernejad, M.; Zhao, X.; Baruël Ørnsø, K.; Füeg, M.; Moreno-García, P.; Rudnev, A. V.; Kaliginedi, V.; Vesztergom, S.; Huang, C.; Hong, W.; et al. J. Am. Chem. Soc. 2014, 136 (52), 17922. doi: 10.1021/ja510335z
doi: 10.1021/ja510335z
Li, Y.; Baghernejad, M.; Qusiy, A. G.; Zsolt Manrique, D.; Zhang, G.; Hamill, J.; Fu, Y.; Broekmann, P.; Hong, W.; Wandlowski, T.; et al. Angew. Chem. Int. Ed. 2015, 54 (46), 13586. doi: 10.1002/anie.201506458
doi: 10.1002/anie.201506458
Xiang, L.; Palma, J. L.; Li, Y.; Mujica, V.; Ratner, M. A.; Tao, N. Nat. Commun. 2017, 8, 14471. doi: 10.1038/ncomms14471
doi: 10.1038/ncomms14471
Yang, Y.; Liu, J. Y.; Chen, Z. B.; Tian, J. H.; Jin, X.; Liu, B.; Li, X.; Luo, Z. Z.; Lu, M.; Yang, F. Z.; et al. Nanotechnology 2011, 22 (27), 275313. doi: 10.1088/0957-4484/22/27/275313
doi: 10.1088/0957-4484/22/27/275313
Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2006, 6 (3), 458. doi: 10.1021/nl052373+
doi: 10.1021/nl052373+
Huang, C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P.; et al. Nat. Commun. 2017, 8, 15436. doi: 10.1038/ncomms15436
doi: 10.1038/ncomms15436
Halbritter, A.; Makk, P.; Mackowiak, S.; Csonka, S.; Wawrzyniak, M.; Martinek, J. Phys. Rev. Lett. 2010, 105 (26). doi: 10.1103/PhysRevLett.105.266805
doi: 10.1103/PhysRevLett.105.266805
Guan, J.; Jia, C.; Li, Y.; Liu, Z.; Wang, J.; Yang, Z.; Gu, C.; Su, D.; Houk, K. N.; Zhang, D. Sci. Adv. 2018, 4 (2), 2177. doi: 10.1126/sciadv.aar2177
doi: 10.1126/sciadv.aar2177
Gu, C.; Hu, C.; Wei, Y.; Lin, D.; Jia, C.; Li, M.; Su, D.; Guan, J.; Xia, A.; Xie, L. Nano Lett. 2018, 18 (7), 4156. doi: 10.1021/acs.nanolett.8b00949
doi: 10.1021/acs.nanolett.8b00949
Wang, H. Y.; Quan, S. G. Acta Phys. -Chim. Sin. 2018, 34 (1), 22.
doi: 10.3866/PKU.WHXB201706302
Jun, L. Y.; Li, Y. L. Acta Phys. -Chim. Sin. 2018, 34 (9), 992.
doi: 10.3866/PKU.WHXB201801302
Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128 (46), 14748. doi: 10.1021/ja0648615
doi: 10.1021/ja0648615
Tian, J. H.; Liu, B.; Jin, S.; Dai, K.; Chen, Z. B.; Li, X.; Ke, H.; Wu, S. T.; Yang, Y.; Ren, B.; et al. A Combined SERS and MCBJ Study on Molecular Junctions on Silicon Chips. In 7th IEEE NANO, Proceedings of the 7th IEEE International, Hong Kong, China, Aug 2−5, 2007; IEEE: Hong Kong, 2008. doi: 10.1109/NANO.2007.4601421
Konishi, T.; Kiguchi, M.; Takase, M.; Nagasawa, F.; Nabika, H.; Ikeda, K.; Uosaki, K.; Ueno, K.; Misawa, H.; Murakoshi, K. J. Am. Chem. Soc. 2013, 135 (3), 1009. doi: 10.1021/ja307821u
doi: 10.1021/ja307821u
Yang, Y.; Chen, Z.; Liu, J.; Lu, M.; Yang, D.; Yang, F.; Tian, Z. Nano Res. 2011, 4 (12), 1199. doi: 10.1007/s12274-011-0170-5
doi: 10.1007/s12274-011-0170-5
Pontes, R. B.; Rocha, A. R.; Sanvito, S.; Fazzio, A.; da Silva, A. J. R. ACS Nano 2011, 5 (2), 795. doi: 10.1021/nn101628w
doi: 10.1021/nn101628w
Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M. New J. Phys. 2008, 10, 065008. doi: 10.1088/1367-2630/10/6/065008
doi: 10.1088/1367-2630/10/6/065008
Zheng, J. T.; Yan, R. W.; Tian, J. H.; Liu, J. Y.; Pei, L. Q.; Wu, D. Y.; Dai, K.; Yang, Y.; Jin, S.; Hong, W.; et al. Electrochim. Acta 2016, 200, 268. doi: 10.1016/j.electacta.2016.03.129
doi: 10.1016/j.electacta.2016.03.129
Yang, Y.; Liu, J.; Feng, S.; Wen, H.; Tian, J.; Zheng, J.; Schöllhorn, B.; Amatore, C.; Chen, Z.; Tian, Z. Nano Res. 2016, 9 (2), 560. doi: 10.1007/s12274-015-0937-1
doi: 10.1007/s12274-015-0937-1
Wang, L.; Li, S. Y.; Yuan, J. H.; Gu, J. Y.; Wang, D.; Wan, L. J. Chem. Asian J. 2014, 9 (8), 2077. doi: 10.1002/asia.201402196
doi: 10.1002/asia.201402196
Zheng, J.; Liu, J.; Zhuo, Y.; Li, R.; Jin, X.; Yang, Y.; Chen, Z.; Shi, J.; Xiao, Z.; Hong, W.; et al. Chem. Sci. 2018, 9 (22), 5033. doi: 10.1039/C8SC00727F
doi: 10.1039/C8SC00727F
Jingwen Wang , Minghao Wu , Xing Zuo , Yaofeng Yuan , Yahao Wang , Xiaoshun Zhou , Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023
Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036
Jin Tong , Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113
Zhenhua Wang , Haoyang Feng , Xiaoyang Shao , Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007
Jiali CHEN , Guoxiang ZHAO , Yayu YAN , Wanting XIA , Qiaohong LI , Jian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408
Zehua Zhang , Haitao Yu , Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042
Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014
Yong Shu , Xing Chen , Sai Duan , Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102
Yuhui Yang , Jintian Luo , Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056
Xinyu Miao , Hao Yang , Jie He , Jing Wang , Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051
Laiying Zhang , Yinghuan Wu , Yazi Yu , Yecheng Xu , Haojie Zhang , Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126
Pingping Zhu , Qiang Zhou , Yu Huang , Haiyang Yang , Pingsheng He , Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170
Yang YANG , Pengcheng LI , Zhan SHU , Nengrong TU , Zonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440
Yuhao SUN , Qingzhe DONG , Lei ZHAO , Xiaodan JIANG , Hailing GUO , Xianglong MENG , Yongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169
Wenyan Dan , Weijie Li , Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Rui Gao , Ying Zhou , Yifan Hu , Siyuan Chen , Shouhong Xu , Qianfu Luo , Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050
Wenbing Hu , Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015
Zhifang SU , Zongjie GUAN , Yu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012