Citation: YU Peikai, FENG Anni, ZHAO Shiqiang, WEI Junying, Yang YANG, SHI Jia, HONG Wenjing. Recent Progress of Break Junction Technique in Single-Molecule Reaction Chemistry[J]. Acta Physico-Chimica Sinica, ;2019, 35(8): 829-839. doi: 10.3866/PKU.WHXB201811027 shu

Recent Progress of Break Junction Technique in Single-Molecule Reaction Chemistry

  • Corresponding author: Yang YANG, yangyang@xmu.edu.cn HONG Wenjing, whong@xmu.edu.cn
  • Received Date: 16 November 2018
    Revised Date: 19 December 2018
    Accepted Date: 20 December 2018
    Available Online: 25 August 2018

    Fund Project: The project was supported by the National Key R & D Program of China (2017YFA0204902) and the Natural Science Foundation of Fujian Province, China (2016J05162)the National Key R & D Program of China 2017YFA0204902the Natural Science Foundation of Fujian Province, China 2016J05162

  • Molecular electronics has been the subject of increasing interest since 1974. Although it describes the utilization of single molecules as active components of electrical devices, molecular electronics remains a fundamental subject to date. Considering that the length of a single molecule is typically several nanometers, the electrical characterization of a probe molecule is a significant experimental challenge. A metal/molecule/metal junction can bridge the gap between nanometer-sized molecules and the macroscopic measuring circuit and is, thus, generally considered as the most common prototype in molecular electronics. For the fabrication and characterization of single-molecule junctions, break junction methods, which include the mechanically controllable break junction (MCBJ) technique and the scanning tunneling microscopy-break junction (STM-BJ) technique, were proposed at the turn of the century and have been developed rapidly in recent years. These methods are widely employed in the experimental study of charge transport through single-molecule junctions and provide a platform to investigate the physical and chemical processes at the single-molecule level. In this review, we mainly focus on MCBJ and STM-BJ techniques applicable for single-molecule conductance measurement and highlight the progress of these techniques in the context of identification and modulation of chemical reactions and evaluation of their reaction kinetics at the single-molecule level. We begin by presenting the operation principles of MCBJ and STM-BJ and stating their brief comparison. Subsequently, we summarize the recent advances in modulating single-molecule chemical reactions. In this regard, we introduce several examples that involve changing the environmental solution, applying an external electrical field, and resorting to electrochemical gating. Next, we overview the application of the break junction techniques in the investigation of reaction kinetics at the single-molecule level. In this section, we also present a brief introduction to studies on single-molecule reaction kinetics using graphene-based nanogaps, wherein conventional metallic electrodes were replaced by graphene electrodes. Furthermore, we discuss the combination of break junction techniques and surface-enhanced Raman spectroscopy for detecting single-molecule reactions occurring at nanometer-scale separation. We discuss the historical development of this combined method and present the latest advancement explaining the origin of the low conductance of 1, 4-benzenedithiol, which is a topic of significant concern in single-molecule electronics. Finally, we discuss some future issues in molecular electronics, including the expansion from simple molecules to complex molecular systems and the introduction of multi-physical fields into single-molecule junctions. Moreover, we provide a list of critical characterization tools in molecular electronics and discuss their potential applications.
  • 加载中
    1. [1]

      Aviram, A.; Ratner, M. A. Chem. Phys. Lett. 1974, 29 (2), 277. doi: 10.1016/0009-2614(74)85031-1  doi: 10.1016/0009-2614(74)85031-1

    2. [2]

      Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Science 1997, 278 (5336), 252. doi: 10.1126/science.278.5336.252  doi: 10.1126/science.278.5336.252

    3. [3]

      Xu, B.; Tao, N. J. Science 2003, 301 (5637), 1221. doi: 10.1126/science.1087481  doi: 10.1126/science.1087481

    4. [4]

      Guo, X.; Small, J. P.; Klare, J. E.; Wang, Y.; Purewal, M. S.; Tam, I. W.; Hong, B. H.; Caldwell, R.; Huang, L.; O'Brien, S.; et al. Science 2006, 311 (5759), 356. doi: 10.1126/science.1120986  doi: 10.1126/science.1120986

    5. [5]

      Yang, Y.; Liu, J. Y.; Yan, R. W.; Wu, D. Y.; Tian, Z. Q. Chem. J. Chin. Univ. 2015, 36 (1), 9  doi: 10.7503/cjcu20140941

    6. [6]

      Ho Choi, S.; Kim, B.; Frisbie, C. D. Science 2008, 320 (5882), 1482. doi: 10.1126/science.1156538  doi: 10.1126/science.1156538

    7. [7]

      Cai, Z.; Lo, W.; Zheng, T.; Li, L.; Zhang, N.; Hu, Y.; Yu, L. J. Am. Chem. Soc. 2016, 138 (33), 10630. doi: 10.1021/jacs.6b05983  doi: 10.1021/jacs.6b05983

    8. [8]

      Zhen, S.; Mao, J. C.; Chen, L.; Ding, S.; Luo, W.; Zhou, X. S.; Qin, A.; Zhao, Z.; Tang, B. Z. Nano Lett. 2018, 18 (7), 4200. doi: 10.1021/acs.nanolett.8b01082  doi: 10.1021/acs.nanolett.8b01082

    9. [9]

      Chen, L.; Wang, Y. H.; He, B.; Nie, H.; Hu, R.; Huang, F.; Qin, A.; Zhou, X. S.; Zhao, Z.; Tang, B. Z. Angew. Chem. Int. Ed. 2015, 54 (14), 4231. doi: 10.1002/anie.201411909  doi: 10.1002/anie.201411909

    10. [10]

      Jia, C.; Migliore, A.; Xin, N.; Huang, S.; Wang, J.; Yang, Q.; Wang, S.; Chen, H.; Wang, D.; Feng, B.; et al. Science 2016, 352 (6292), 1443. doi: 10.1126/science.aaf6298  doi: 10.1126/science.aaf6298

    11. [11]

      Su, T. A.; Li, H.; Steigerwald, M. L.; Venkataraman, L.; Nuckolls, C. Nat. Chem. 2015, 7, 215. doi: 10.1038/nchem.2180  doi: 10.1038/nchem.2180

    12. [12]

      Frisbie, C. D. Science 2016, 352 (6292), 1394. doi: 10.1126/science.aag0827  doi: 10.1126/science.aag0827

    13. [13]

      Wen, H.; Li, W.; Chen, J.; He, G.; Li, L.; Olson, M. A.; Sue, A. C. H.; Stoddart, J. F.; Guo, X. Sci. Adv. 2016, 2 (11), 1601113. doi: 10.1126/sciadv.1601113  doi: 10.1126/sciadv.1601113

    14. [14]

      Díez-Pérez, I.; Hihath, J.; Lee, Y.; Yu, L.; Adamska, L.; Kozhushner, M. A.; Oleynik, I. I.; Tao, N. Nat. Chem. 2009, 1, 635. doi: 10.1038/nchem.392  doi: 10.1038/nchem.392

    15. [15]

      Chen, X. P.; Roemer, M.; Yuan, L.; Du, W.; Thompson, D.; del Barco, E.; Nijhuis, C. A. Nat. Nanotechnol. 2017, 12 (8), 797. doi: 10.1038/nnano.2017.110  doi: 10.1038/nnano.2017.110

    16. [16]

      Xiang, D.; Wang, X.; Jia, C.; Lee, T.; Guo, X. Chem. Rev. 2016, 116 (7), 4318. doi: 10.1021/acs.chemrev.5b00680  doi: 10.1021/acs.chemrev.5b00680

    17. [17]

      Tao, N. J. Nat. Nanotechnol. 2006, 1 (3), 173. doi: 10.1038/nnano.2006.130  doi: 10.1038/nnano.2006.130

    18. [18]

      Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Nat. Nanotechnol. 2009, 4, 230. doi: 10.1038/nnano.2009.10  doi: 10.1038/nnano.2009.10

    19. [19]

      Yang, G.; Wu, H.; Wei, J.; Zheng, J.; Chen, Z.; Liu, J.; Shi, J.; Yang, Y.; Hong, W. Chin. Chem. Lett. 2018, 29 (1), 147. doi: 10.1016/j.cclet.2017.06.015  doi: 10.1016/j.cclet.2017.06.015

    20. [20]

      Venkataraman, L.; Klare, J. E.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nature 2006, 442, 904. doi: 10.1038/nature05037  doi: 10.1038/nature05037

    21. [21]

      Mao, J. C.; Peng, L. L.; Li, W. Q.; Chen, F.; Wang, H. G.; Shao, Y.; Zhou, X. S.; Zhao, X. Q.; Xie, H.; Niu, Z. J. J. Phys. Chem. C 2017, 121 (3), 1472. doi: 10.1021/acs.jpcc.6b10925  doi: 10.1021/acs.jpcc.6b10925

    22. [22]

      Martin, C. A.; Ding, D.; Sorensen, J. K.; Bjornholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. J. Am. Chem. Soc. 2008, 130 (40), 13198. doi: 10.1021/ja804699a  doi: 10.1021/ja804699a

    23. [23]

      Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; van Hemert, M. C.; van Ruitenbeek, J. M. Nature 2002, 419, 906. doi: 10.1038/nature01103  doi: 10.1038/nature01103

    24. [24]

      Kiguchi, M.; Miura, S.; Hara, K.; Sawamura, M.; Murakoshi, K. Appl. Phys. Lett. 2007, 91 (5), 053110. doi: 10.1063/1.2757592  doi: 10.1063/1.2757592

    25. [25]

      Yang, Y.; Liu, J.; Zheng, J.; Lu, M.; Shi, J.; Hong, W.; Yang, F.; Tian, Z. Nano Res. 2017, 10 (10), 3314. doi: 10.1007/s12274-017-1544-0  doi: 10.1007/s12274-017-1544-0

    26. [26]

      Li, Y.; Demir, F.; Kaneko, S.; Fujii, S.; Nishino, T.; Saffarzadeh, A.; Kirczenow, G.; Kiguchi, M. Phys. Chem. Chem. Phys. 2015, 17 (48), 32436. doi: 10.1039/c5cp05227k  doi: 10.1039/c5cp05227k

    27. [27]

      Peng, L. L.; Chen, F.; Hong, Z. W.; Zheng, J. F.; Fillaud, L.; Yuan, Y.; Huang, M. L.; Shao, Y.; Zhou, X. S.; Chen, J. Z.; et al. Nanoscale 2018, 10 (15), 7026. doi: 10.1039/c8nr00625c  doi: 10.1039/c8nr00625c

    28. [28]

      Hong, Z. W.; Aissa, M. A. B.; Peng, L. L.; Xie, H.; Chen, D. L.; Zheng, J. F.; Shao, Y.; Zhou, X. S.; Raouafi, N.; Niu, Z. J. Electrochem. Commun. 2016, 68, 86. doi: 10.1016/j.elecom.2016.05.002  doi: 10.1016/j.elecom.2016.05.002

    29. [29]

      Li, H. X.; Su, T. A.; Camarasa-Gomez, M.; Hernangomez-Perez, D.; Henn, S. E.; Pokorny, V.; Caniglia, C. D.; Inkpen, M. S.; Korytar, R.; Steigerwald, M. L.; et al. Angew. Chem. Int. Ed. 2017, 56 (45), 14145. doi: 10.1002/anie.201708524  doi: 10.1002/anie.201708524

    30. [30]

      Wang, Y. H.; Hong, Z. W.; Sun, Y. Y.; Li, D. F.; Han, D.; Zheng, J. F.; Niu, Z. J.; Zhou, X. S. J. Phys. Chem. C 2014, 118 (32), 18756. doi: 10.1021/jp505374v  doi: 10.1021/jp505374v

    31. [31]

      Guo, X. F.; Gorodetsky, A. A.; Hone, J.; Barton, J. K.; Nuckolls, C. Nat. Nanotechnol. 2008, 3 (3), 163. doi: 10.1038/nnano.2008.4  doi: 10.1038/nnano.2008.4

    32. [32]

      Zhou, C.; Li, X. X.; Gong, Z. L.; Jia, C. C.; Lin, Y. W.; Gu, C. H.; He, G.; Zhong, Y. W.; Yang, J. L.; Guo, X. F. Nat. Commun. 2018, 9, 807. doi: 10.1038/s41467-018-03203-1  doi: 10.1038/s41467-018-03203-1

    33. [33]

      Moreland, J.; Ekin, J. W. J. Appl. Phys. 1985, 58 (10), 3888. doi: 10.1063/1.335608  doi: 10.1063/1.335608

    34. [34]

      Xiang, D.; Jeong, H.; Lee, T.; Mayer, D. Adv. Mater. 2013, 25 (35), 4845. doi: 10.1002/adma.201301589  doi: 10.1002/adma.201301589

    35. [35]

      Wang, L.; Wang, L.; Zhang, L.; Xiang, D. Top. Current Chem. 2017, 375 (3), 61. doi: 10.1007/s41061-017-0149-0  doi: 10.1007/s41061-017-0149-0

    36. [36]

      Reichert, J.; Ochs, R.; Beckmann, D.; Weber, H. B.; Mayor, M.; Löhneysen, H. V. Phys. Rev. Lett. 2002, 88 (17), 176804. doi: 10.1103/PhysRevLett.88.176804  doi: 10.1103/PhysRevLett.88.176804

    37. [37]

      Yang, Y.; Gantenbein, M.; Alqorashi, A.; Wei, J.; Sangtarash, S.; Hu, D.; Sadeghi, H.; Zhang, R.; Pi, J.; Chen, L.; et al. J. Phys. Chem. C 2018, 122 (26), 14965. doi: 10.1021/acs.jpcc.8b03023  doi: 10.1021/acs.jpcc.8b03023

    38. [38]

      Sun, Y. Y.; Peng, Z. L.; Hou, R.; Liang, J. H.; Zheng, J. F.; Zhou, X. Y.; Zhou, X. S.; Jin, S.; Niu, Z. J.; Mao, B. W. Phys. Chem. Chem. Phys. 2014, 16 (6), 2260. doi: 10.1039/c3cp53269k  doi: 10.1039/c3cp53269k

    39. [39]

      Wen, H. M.; Yang, Y.; Zhou, X. S.; Liu, J. Y.; Zhang, D. B.; Chen, Z. B.; Wang, J. Y.; Chen, Z. N.; Tian, Z. Q. Chem. Sci. 2013, 4 (6), 2471. doi: 10.1039/C3SC50312G  doi: 10.1039/C3SC50312G

    40. [40]

      Liu, J.; Zhao, X.; Al-Galiby, Q.; Huang, X.; Zheng, J.; Li, R.; Huang, C.; Yang, Y.; Shi, J.; Manrique, D. Z.; et al. Angew. Chem. Int. Ed. 2017, 56 (42), 13061. doi: 10.1002/anie.201707710  doi: 10.1002/anie.201707710

    41. [41]

      Yang, G.; Sangtarash, S.; Liu, Z.; Li, X.; Sadeghi, H.; Tan, Z.; Li, R.; Zheng, J.; Dong, X.; Liu, J.; et al. Chem. Sci. 2017, 8 (11), 7505. doi: 10.1039/C7SC01014A  doi: 10.1039/C7SC01014A

    42. [42]

      Perrin, M. L.; Verzijl, C. J. O.; Martin, C. A.; Shaikh, A. J.; Eelkema, R.; van Esch, J. H.; van Ruitenbeek, J. M.; Thijssen, J. M.; van der Zant, H. S. J.; Dulić, D. Nat. Nanotechnol. 2013, 8, 282. doi: 10.1038/nnano.2013.26  doi: 10.1038/nnano.2013.26

    43. [43]

      Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Nature 2009, 462 (7276), 1039. doi: 10.1038/nature08639  doi: 10.1038/nature08639

    44. [44]

      Xiang, D.; Jeong, H.; Kim, D.; Lee, T.; Cheng, Y.; Wang, Q.; Mayer, D. Nano Lett. 2013, 13 (6), 2809. doi: 10.1021/nl401067x  doi: 10.1021/nl401067x

    45. [45]

      Aragonès, A. C.; Haworth, N. L.; Darwish, N.; Ciampi, S.; Bloomfield, N. J.; Wallace, G. G.; Diez-Perez, I.; Coote, M. L. Nature 2016, 531, 88. doi: 10.1038/nature16989  doi: 10.1038/nature16989

    46. [46]

      Zhang, L.; Laborda, E.; Darwish, N.; Noble, B. B.; Tyrell, J. H.; Pluczyk, S.; Le Brun, A. P.; Wallace, G. G.; Gonzalez, J.; Coote, M. L.; et al. J. Am. Chem. Soc. 2018, 140 (2), 766. doi: 10.1021/jacs.7b11628  doi: 10.1021/jacs.7b11628

    47. [47]

      Xiao, X. Y.; Xu, B. Q.; Tao, N. J. Nano Lett. 2004, 4 (2), 267. doi: 10.1021/nl035000m  doi: 10.1021/nl035000m

    48. [48]

      Darwish, N.; Díez-Pérez, I.; Da Silva, P.; Tao, N.; Gooding, J. J.; Paddon-Row, M. N. Angew. Chem. Int. Ed. 2012, 51 (13), 3203. doi: 10.1002/anie.201107765  doi: 10.1002/anie.201107765

    49. [49]

      Baghernejad, M.; Zhao, X.; Baruël Ørnsø, K.; Füeg, M.; Moreno-García, P.; Rudnev, A. V.; Kaliginedi, V.; Vesztergom, S.; Huang, C.; Hong, W.; et al. J. Am. Chem. Soc. 2014, 136 (52), 17922. doi: 10.1021/ja510335z  doi: 10.1021/ja510335z

    50. [50]

      Li, Y.; Baghernejad, M.; Qusiy, A. G.; Zsolt Manrique, D.; Zhang, G.; Hamill, J.; Fu, Y.; Broekmann, P.; Hong, W.; Wandlowski, T.; et al. Angew. Chem. Int. Ed. 2015, 54 (46), 13586. doi: 10.1002/anie.201506458  doi: 10.1002/anie.201506458

    51. [51]

      Xiang, L.; Palma, J. L.; Li, Y.; Mujica, V.; Ratner, M. A.; Tao, N. Nat. Commun. 2017, 8, 14471. doi: 10.1038/ncomms14471  doi: 10.1038/ncomms14471

    52. [52]

      Yang, Y.; Liu, J. Y.; Chen, Z. B.; Tian, J. H.; Jin, X.; Liu, B.; Li, X.; Luo, Z. Z.; Lu, M.; Yang, F. Z.; et al. Nanotechnology 2011, 22 (27), 275313. doi: 10.1088/0957-4484/22/27/275313  doi: 10.1088/0957-4484/22/27/275313

    53. [53]

      Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Nano Lett. 2006, 6 (3), 458. doi: 10.1021/nl052373+  doi: 10.1021/nl052373+

    54. [54]

      Huang, C.; Jevric, M.; Borges, A.; Olsen, S. T.; Hamill, J. M.; Zheng, J.; Yang, Y.; Rudnev, A.; Baghernejad, M.; Broekmann, P.; et al. Nat. Commun. 2017, 8, 15436. doi: 10.1038/ncomms15436  doi: 10.1038/ncomms15436

    55. [55]

      Halbritter, A.; Makk, P.; Mackowiak, S.; Csonka, S.; Wawrzyniak, M.; Martinek, J. Phys. Rev. Lett. 2010, 105 (26). doi: 10.1103/PhysRevLett.105.266805  doi: 10.1103/PhysRevLett.105.266805

    56. [56]

      Guan, J.; Jia, C.; Li, Y.; Liu, Z.; Wang, J.; Yang, Z.; Gu, C.; Su, D.; Houk, K. N.; Zhang, D. Sci. Adv. 2018, 4 (2), 2177. doi: 10.1126/sciadv.aar2177  doi: 10.1126/sciadv.aar2177

    57. [57]

      Gu, C.; Hu, C.; Wei, Y.; Lin, D.; Jia, C.; Li, M.; Su, D.; Guan, J.; Xia, A.; Xie, L. Nano Lett. 2018, 18 (7), 4156. doi: 10.1021/acs.nanolett.8b00949  doi: 10.1021/acs.nanolett.8b00949

    58. [58]

      Wang, H. Y.; Quan, S. G. Acta Phys. -Chim. Sin. 2018, 34 (1), 22.  doi: 10.3866/PKU.WHXB201706302
       

    59. [59]

      Jun, L. Y.; Li, Y. L. Acta Phys. -Chim. Sin. 2018, 34 (9), 992.  doi: 10.3866/PKU.WHXB201801302
       

    60. [60]

      Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N.; Tian, Z. Q. J. Am. Chem. Soc. 2006, 128 (46), 14748. doi: 10.1021/ja0648615  doi: 10.1021/ja0648615

    61. [61]

      Tian, J. H.; Liu, B.; Jin, S.; Dai, K.; Chen, Z. B.; Li, X.; Ke, H.; Wu, S. T.; Yang, Y.; Ren, B.; et al. A Combined SERS and MCBJ Study on Molecular Junctions on Silicon Chips. In 7th IEEE NANO, Proceedings of the 7th IEEE International, Hong Kong, China, Aug 2−5, 2007; IEEE: Hong Kong, 2008. doi: 10.1109/NANO.2007.4601421

    62. [62]

      Konishi, T.; Kiguchi, M.; Takase, M.; Nagasawa, F.; Nabika, H.; Ikeda, K.; Uosaki, K.; Ueno, K.; Misawa, H.; Murakoshi, K. J. Am. Chem. Soc. 2013, 135 (3), 1009. doi: 10.1021/ja307821u  doi: 10.1021/ja307821u

    63. [63]

      Yang, Y.; Chen, Z.; Liu, J.; Lu, M.; Yang, D.; Yang, F.; Tian, Z. Nano Res. 2011, 4 (12), 1199. doi: 10.1007/s12274-011-0170-5  doi: 10.1007/s12274-011-0170-5

    64. [64]

      Pontes, R. B.; Rocha, A. R.; Sanvito, S.; Fazzio, A.; da Silva, A. J. R. ACS Nano 2011, 5 (2), 795. doi: 10.1021/nn101628w  doi: 10.1021/nn101628w

    65. [65]

      Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M. New J. Phys. 2008, 10, 065008. doi: 10.1088/1367-2630/10/6/065008  doi: 10.1088/1367-2630/10/6/065008

    66. [66]

      Zheng, J. T.; Yan, R. W.; Tian, J. H.; Liu, J. Y.; Pei, L. Q.; Wu, D. Y.; Dai, K.; Yang, Y.; Jin, S.; Hong, W.; et al. Electrochim. Acta 2016, 200, 268. doi: 10.1016/j.electacta.2016.03.129  doi: 10.1016/j.electacta.2016.03.129

    67. [67]

      Yang, Y.; Liu, J.; Feng, S.; Wen, H.; Tian, J.; Zheng, J.; Schöllhorn, B.; Amatore, C.; Chen, Z.; Tian, Z. Nano Res. 2016, 9 (2), 560. doi: 10.1007/s12274-015-0937-1  doi: 10.1007/s12274-015-0937-1

    68. [68]

      Wang, L.; Li, S. Y.; Yuan, J. H.; Gu, J. Y.; Wang, D.; Wan, L. J. Chem. Asian J. 2014, 9 (8), 2077. doi: 10.1002/asia.201402196  doi: 10.1002/asia.201402196

    69. [69]

      Zheng, J.; Liu, J.; Zhuo, Y.; Li, R.; Jin, X.; Yang, Y.; Chen, Z.; Shi, J.; Xiao, Z.; Hong, W.; et al. Chem. Sci. 2018, 9 (22), 5033. doi: 10.1039/C8SC00727F  doi: 10.1039/C8SC00727F

  • 加载中
    1. [1]

      Jingwen Wang Minghao Wu Xing Zuo Yaofeng Yuan Yahao Wang Xiaoshun Zhou Jianfeng Yan . Advances in the Application of Electrochemical Regulation in Investigating the Electron Transport Properties of Single-Molecule Junctions. University Chemistry, 2025, 40(3): 291-301. doi: 10.12461/PKU.DXHX202406023

    2. [2]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    3. [3]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    4. [4]

      Zhenhua Wang Haoyang Feng Xiaoyang Shao Wenru Fan . Vitamins in Solid Propellants: Controlled Synthesis of Neutral Macromolecular Bonding Agents. University Chemistry, 2025, 40(4): 1-9. doi: 10.3866/PKU.DXHX202401007

    5. [5]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    6. [6]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    7. [7]

      Wen-Bing Hu . Systematic Introduction of Polymer Chain Structures. University Chemistry, 2025, 40(4): 15-19. doi: 10.3866/PKU.DXHX202401014

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Yuhui Yang Jintian Luo Biao Zuo . A Teaching Approach to Polymer Surface and Interface in Undergraduate Polymer Physics Courses. University Chemistry, 2025, 40(4): 126-130. doi: 10.12461/PKU.DXHX202408056

    10. [10]

      Xinyu Miao Hao Yang Jie He Jing Wang Zhiliang Jin . Adjusting the electronic structure of Keggin-type polyoxometalates to construct S-scheme heterojunction for photocatalytic hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(6): 100051-. doi: 10.1016/j.actphy.2025.100051

    11. [11]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    12. [12]

      Pingping Zhu Qiang Zhou Yu Huang Haiyang Yang Pingsheng He Shiyan Xiao . Design and Practice of Ideological and Political Cases in the Course of Polymer Physics Experiments: Molecular Weight Determination of Polymers by Dilute Solution Viscosity Method as an Example. University Chemistry, 2025, 40(4): 94-99. doi: 10.12461/PKU.DXHX202405170

    13. [13]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    14. [14]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    15. [15]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    16. [16]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    17. [17]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    18. [18]

      Wenbing Hu Jin Zhu . Flipped Classroom Approach in Teaching Professional English Reading and Writing to Polymer Graduates. University Chemistry, 2024, 39(6): 128-131. doi: 10.3866/PKU.DXHX202310015

    19. [19]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    20. [20]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

Metrics
  • PDF Downloads(11)
  • Abstract views(610)
  • HTML views(61)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return