Concentration Dependent Effects of Ca2+ and Mg2+ on the Phosphatidylethanolamine-Phosphatidylglycerol Bilayer
- Corresponding author: JIANG Hualiang, hljiang@simm.ac.cn YANG Huaiyu, hyyang@simm.ac.cn
Citation:
ZHANG Tao, QIU Yunguang, LUO Qichao, CHENG Xi, ZHAO Lifen, YAN Xin, PENG Bo, JIANG Hualiang, YANG Huaiyu. Concentration Dependent Effects of Ca2+ and Mg2+ on the Phosphatidylethanolamine-Phosphatidylglycerol Bilayer[J]. Acta Physico-Chimica Sinica,
;2019, 35(8): 840-849.
doi:
10.3866/PKU.WHXB201811016
Edidin, M. Nat. Rev. Mol. Cell Biol. 2003, 4, 414. doi: 10.1038/nrm1102
doi: 10.1038/nrm1102
Clifton, L. A.; Holt, S. A.; Hughes, A. V.; Daulton, E. L.; Arunmanee, W.; Heinrich, F.; Khalid, S.; Jefferies, D.; Charlton, T. R.; Webster, J. R.; et al. Angew. Chem. Int. Ed. 2015, 54, 11952. doi: 10.1002/anie.201504287
doi: 10.1002/anie.201504287
Brown, L.; Wolf, J. M.; Prados-Rosales, R.; Casadevall, A. Nat. Rev. Microbiol. 2015, 13, 620. doi: 10.1038/nrmicro3480
doi: 10.1038/nrmicro3480
Zgurskaya, H. I.; Lopez, C. A.; Gnanakaran, S. ACS Infect. Dis. 2015, 1, 512. doi: 10.1021/acsinfecdis.5b00097
doi: 10.1021/acsinfecdis.5b00097
Travers, T.; Wang, K. J.; Lopez, C. A.; Gnanakaran, S. Res. Microbiol. 2018, 169, 414. doi: 10.1016/j.resmic.2018.01.002
doi: 10.1016/j.resmic.2018.01.002
Parkin, J.; Chavent, M.; Khalid, S. Biophys. J. 2015, 109, 461. doi: 10.1016/j.bpj.2015.06.050
doi: 10.1016/j.bpj.2015.06.050
Jones, H. E.; Holland, I. B.; Campbell, A. K. Cell Calcium 2002, 32, 183. doi: 10.1016/s0143416002001537
doi: 10.1016/s0143416002001537
Naseem, R.; Wann, K. T.; Holland, I. B.; Campbell, A. K. J. Mol. Biol. 2009, 391, 42. doi: 10.1016/j.jmb.2009.05.064
doi: 10.1016/j.jmb.2009.05.064
Saier, M. H., Jr. Microbiol. Mol. Biol. Rev. 2000, 64, 354. doi: 10.1128/mmbr.64.2.354-411.2000
doi: 10.1128/mmbr.64.2.354-411.2000
Shi, X.; Bi, Y.; Yang, W.; Guo, X.; Jiang, Y.; Wan, C.; Li, L.; Bai, Y.; Guo, J.; Wang, Y.; et al. Nature 2013, 493, 111. doi: 10.1038/nature11699
doi: 10.1038/nature11699
Boettcher, J. M.; Davis-Harrison, R. L.; Clay, M. C.; Nieuwkoop, A. J.; Ohkubo, Y. Z.; Tajkhorshid, E.; Morrissey, J. H.; Rienstra, C. M. Biochemistry 2011, 50, 2264. doi: 10.1021/bi1013694
doi: 10.1021/bi1013694
Akutsu, H.; Seelig, J. Biochemistry 1981, 20, 7366. doi: 10.1021/bi00529a007
doi: 10.1021/bi00529a007
Martens, S.; McMahon, H. T. Nat. Rev. Mol. Cell. Biol. 2008, 9, 543. doi: 10.1038/nrm2417
doi: 10.1038/nrm2417
Ortiz, A.; Killian, J. A.; Verkleij, A. J.; Wilschut, J. Biophys. J. 1999, 77, 2003. doi: 10.1016/s0006-3495(99)77041-4
doi: 10.1016/s0006-3495(99)77041-4
Friel, D. D.; Chiel, H. J. Trends Neurosci. 2008, 31, 8. doi: 10.1016/j.tins.2007.11.004
doi: 10.1016/j.tins.2007.11.004
Romani, A. M.; Scarpa, A. Front Biosci. 2000, 5, D720. doi: 10.2741/Romani
doi: 10.2741/Romani
Clifton, L. A.; Skoda, M. W. A.; Le Brun, A. P.; Ciesielski, F.; Kuzmenko, I.; Holt, S. A.; Lakey, J. H. Langmuir 2015, 31, 404. doi: 10.1021/la504407v
doi: 10.1021/la504407v
Montero, M.; Eydallin, G.; Viale, A. M.; Almagro, G.; Munoz, F. J.; Rahimpour, M.; Sesma, M. T.; Baroja-Fernandez, E.; Pozueta-Romero, J. Biochem. J. 2009, 424, 129. doi: 10.1042/bj20090980
doi: 10.1042/bj20090980
Balsera, M.; Goetze, T. A.; Kovacs-Bogdan, E.; Schurmann, P.; Wagner, R.; Buchanan, B. B.; Soll, J.; Bolter, B. J. Biol. Chem. 2009, 284, 2603. doi: 10.1074/jbc.m807134200
doi: 10.1074/jbc.m807134200
Kanipes, M. I.; Lin, S.; Cotter, R. J.; Raetz, C. R. J. Biol. Chem. 2001, 276, 1156. doi: 10.1074/jbc.m009019200
doi: 10.1074/jbc.m009019200
Gangola, P.; Rosen, B. P. J. Biol. Chem. 1987, 262, 12570.
Dominguez, D. C. Mol. Microbiol. 2004, 54, 291. doi: 10.1111/j.1365-2958.2004.04276.x
doi: 10.1111/j.1365-2958.2004.04276.x
Chaigne-Delalande, B.; Lenardo, M. J. Trends Immunol. 2014, 35, 332. doi: 10.1016/j.it.2014.05.001
doi: 10.1016/j.it.2014.05.001
Groisman, E. A.; Hollands, K.; Kriner, M. A.; Lee, E. J.; Park, S. Y.; Pontes, M. H. Annu. Rev. Genet. 2013, 47, 625. doi: 10.1146/annurev-genet-051313-051025
doi: 10.1146/annurev-genet-051313-051025
Suarez-Germa, C.; Domenech, O.; Montero, M. T.; Hernandez-Borrell, J. Biochim. Biophys. Acta-Biomembr. 2014, 1838, 842. doi: 10.1016/j.bbamem.2013.11.015
doi: 10.1016/j.bbamem.2013.11.015
Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; Zhou, R. Nat. Nanotechnol. 2013, 8, 594. doi: 10.1038/nnano.2013.125
doi: 10.1038/nnano.2013.125
Picas, L.; Carretero-Genevrier, A.; Montero, M. T.; Vazquez-Ibar, J. L.; Seantier, B.; Milhiet, P. E.; Hernandez-Borrell, J. Biochim. Biophys. Acta-Biomembr. 2010, 1798, 1014. doi: 10.1016/j.bbamem.2010.01.008
doi: 10.1016/j.bbamem.2010.01.008
Mao, Y.; Du, Y.; Cang, X.; Wang, J.; Chen, Z.; Yang, H.; Jiang, H. J. Phys. Chem. B 2013, 117, 850. doi: 10.1021/jp310163z
doi: 10.1021/jp310163z
Tsai, H. H. G.; Lai, W. X.; Lin, H. D.; Lee, J. B.; Juang, W. F.; Tseng, W. H. Biochim. Biophys. Acta-Biomembr. 2012, 1818, 2742. doi: 10.1016/j.bbamem.2012.05.029
doi: 10.1016/j.bbamem.2012.05.029
Chen, W. Q.; Guan, Y. J.; Zhang, X. P.; Deng, Y. Q. Acta Phys. -Chim. Sin. 2018, 34, 912.
doi: 10.3866/PKU.WHXB201801091
Mao, L.; Yang, L.; Zhang, Q.; Jiang, H.; Yang, H. Biochem. Biophys. Res. Commun. 2015, 468, 125. doi: 10.1016/j.bbrc.2015.10.149
doi: 10.1016/j.bbrc.2015.10.149
Liu, F. F.; Fan, Y. B.; Liu, Z.; Bai, S. Acta Phys. -Chim. Sin. 2017, 33, 1905.
doi: 10.3866/PKU.WHXB201704274
Liu, F. F.; Dong, X. Y.; Sun, Y. Acta Phys. -Chim. Sin. 2010, 26, 1643.
doi: 10.3866/PKU.WHXB20100613
Zhao, Y. S.; Zheng, Q. C.; Zhang, H. X.; Chu, H. Y.; Sun, J. Z. Acta Phys. -Chim. Sin. 2009, 25, 417.
doi: 10.3866/PKU.WHXB20090304
Melcrova, A.; Pokorna, S.; Pullanchery, S.; Kohagen, M.; Jurkiewicz, P.; Hof, M.; Jungwirth, P.; Cremer, P. S.; Cwiklik, L. Sci. Rep. 2016, 6, 38035. doi: 10.1038/srep38035
doi: 10.1038/srep38035
Domingues, M. M.; Inacio, R. G.; Raimundo, J. M.; Martins, M.; Castanho, M. A.; Santos, N. C. Biopolymers 2012, 98, 338. doi: 10.1002/bip.22095
doi: 10.1002/bip.22095
Luo, S. Q.; Wang, M. N.; Zhao, W. W.; Wang, Y. L. Acta Phys. -Chim. Sin. 2019, 35, 766.
doi: 10.3866/PKU.WHXB201809038
Liu, H. C.; Feng, Y. J. Acta Phys. -Chim. Sin. 2019, 35, 408.
doi: 10.3866/PKU.WHXB201803051
Wei, B. Z.; Guo, Z. Y.; Wang, F.; Huang, A. M.; Ma, L. Acta Phys. -Chim. Sin. 2018, 34, 185.
doi: 10.3866/PKU.WHXB201707175
Hendrich, A. B.; Malon, R.; Pola, A.; Shirataki, Y.; Motohashi, N.; Michalak, K. Eur. J. Pharm. Sci. 2002, 16, 201. doi: 10.1016/s0928-0987(02)00106-9
doi: 10.1016/s0928-0987(02)00106-9
Wu, E. L.; Cheng, X.; Jo, S.; Rui, H.; Song, K. C.; Davila-Contreras, E. M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R. M.; et al. J. Comput. Chem. 2014, 35, 1997. doi: 10.1002/jcc.23702
doi: 10.1002/jcc.23702
Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1-2, 19. doi: 10.1016/j.softx.2015.06.001
doi: 10.1016/j.softx.2015.06.001
MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. J. Phys. Chem. B 1998, 102, 3586. doi: 10.1021/jp973084f
doi: 10.1021/jp973084f
Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 014101. doi: 10.1063/1.2408420
doi: 10.1063/1.2408420
Nosé, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334
doi: 10.1063/1.447334
Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055. doi: 10.1080/00268978300102851
doi: 10.1080/00268978300102851
Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952. doi: 10.1002/jcc.540130805
doi: 10.1002/jcc.540130805
Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463. doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h
doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h
Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089. doi: 10.1063/1.464397
doi: 10.1063/1.464397
Guixa-Gonzalez, R.; Rodriguez-Espigares, I.; Ramirez-Anguita, J. M.; Carrio-Gaspar, P.; Martinez-Seara, H.; Giorgino, T.; Selent, J. Bioinformatics 2014, 30, 1478. doi: 10.1093/bioinformatics/btu037
doi: 10.1093/bioinformatics/btu037
Martin-Molina, A.; Rodriguez-Beas, C.; Faraudo, J. Biophys. J. 2012, 102, 2095. doi: 10.1016/j.bpj.2012.03.009
doi: 10.1016/j.bpj.2012.03.009
Bockmann, R. A.; Grubmuller, H. Angew. Chem. Int. Ed. 2004, 43, 1021. doi: 10.1002/anie.200352784
doi: 10.1002/anie.200352784
Rand, R. P.; Fuller, N.; Parsegian, V. A.; Rau, D. C. Biochemistry 1988, 27, 7711. doi: 10.1021/bi00420a021
doi: 10.1021/bi00420a021
Yang, H.; Xu, Y.; Gao, Z.; Mao, Y.; Du, Y.; Jiang, H. J. Phys. Chem B 2010, 114, 16978. doi: 10.1021/jp1091569
doi: 10.1021/jp1091569
Yuwen Zhu , Xiang Deng , Yan Wu , Baode Shen , Lingyu Hang , Yuye Xue , Hailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733
Jinqi Yang , Xiaoxiang Hu , Yuanyuan Zhang , Lingyu Zhao , Chunlin Yue , Yuan Cao , Yangyang Zhang , Zhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128
Yinghui Xia , Yixi Lin , Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Zhenming Xu , Yibo Wang , Zhenhui Liu , Duo Chen , Mingbo Zheng , Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096
Zhi Zhou , Yu-E Lian , Yuqing Li , Hui Gao , Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104
Sanmei Wang , Yong Zhou , Hengxin Fang , Chunyang Nie , Chang Q Sun , Biao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476
Bingwei Wang , Yihong Ding , Xiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721
Kai Ye , Zhicheng Ye , Chuantao Wang , Zhilai Luo , Cheng Lian , Chunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033
Shiyu Hou , Maolin Sun , Liming Cao , Chaoming Liang , Jiaxin Yang , Xinggui Zhou , Jinxing Ye , Ruihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761
Zhibin Ren , Shan Li , Xiaoying Liu , Guanghao Lv , Lei Chen , Jingli Wang , Xingyi Li , Jiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629
Cheng Wang , Ji Wang , Dong Liu , Zhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302
Jinli Chen , Shouquan Feng , Tianqi Yu , Yongjin Zou , Huan Wen , Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168
Wen Su , Siying Liu , Qingfu Zhang , Zhongyan Zhou , Na Wang , Lei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237
Yanyu Jin , Wenzhe Si , Xing Yuan , Hongjun Cheng , Bin Zhou , Li Cai , Yu Wang , Qibao Wang , Junhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260
Man Wu , Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452
Yan-Bo Li , Yi Li , Liang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294
Heng Gao , Zhaocong Cheng , Guangshui Tu , Zonglin Qiu , Xieyi Xiao , Haotian Zhou , Handou Zheng , Haiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762
Kangrong Yan , Ziqiu Shen , Yanchun Huang , Benfang Niu , Hongzheng Chen , Chang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516
Yuan Dong , Mutian Ma , Zhenyang Jiao , Sheng Han , Likun Xiong , Zhao Deng , Yang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049