Citation: ZHANG Tao, QIU Yunguang, LUO Qichao, CHENG Xi, ZHAO Lifen, YAN Xin, PENG Bo, JIANG Hualiang, YANG Huaiyu. Concentration Dependent Effects of Ca2+ and Mg2+ on the Phosphatidylethanolamine-Phosphatidylglycerol Bilayer[J]. Acta Physico-Chimica Sinica, ;2019, 35(8): 840-849. doi: 10.3866/PKU.WHXB201811016 shu

Concentration Dependent Effects of Ca2+ and Mg2+ on the Phosphatidylethanolamine-Phosphatidylglycerol Bilayer

  • Corresponding author: JIANG Hualiang, hljiang@simm.ac.cn YANG Huaiyu, hyyang@simm.ac.cn
  • Received Date: 12 November 2018
    Revised Date: 28 December 2018
    Accepted Date: 31 December 2018
    Available Online: 3 August 2019

    Fund Project: the National Natural Science Foundation of China 21422208The project was supported by the National Natural Science Foundation of China (21422208), and the Special Program for Applied Research on Super Computation of the Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (U1501501)the Special Program for Applied Research on Super Computation of the Applied Research on Super Computation of the NSFC-Guangdong Joint Fund U1501501

  • Ca2+ and Mg2+ ions are the main divalent cations in living cells and play vital roles in the structure and function of biological membranes. To date, the differences in the effects of these two ions on the Escherichia coli (E. coli) inner membrane at various concentrations remain unknown. Here, the effects of Ca2+ and Mg2+ ions on a mixed lipid bilayer composed of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) in a 3 : 1 ratio (mol/mol), which mimics the E. coli inner membrane, were quantitatively differentiated at different concentrations by dynamic light scattering (DLS), zeta potential measurements and all-atom molecular dynamics (AA-MD) simulations. The DLS results demonstrated that the POPE/POPG liposomes were homogeneous and monodisperse in solutions with Ca2+ or Mg2+ ion concentrations of 0 and 1 mmol∙L-1. As the Ca2+ or Mg2+ ion concentration was increased to 5-100 mmol∙L-1, lipid aggregation or the fusion of unilamellar liposomes occurred in the ion solutions. The zeta potential measurements showed that both the Ca2+ and Mg2+ ions had overcharging effects on the negatively charged POPE/POPG liposomes. The AA-MD simulation results indicated that the Ca2+ ions irreversibly adsorbed on the membranes when the simulation time was longer than 100 ns, while the Mg2+ ions were observed to dynamically adsorb on and desorb from the membranes at various concentrations. These results are consistent with the DLS and zeta potential experiments. The average numbers of Ca2+ and Mg2+ ions in the first coordination shell of the oxygen atoms of the phosphate, carbonyl and hydroxyl groups of POPE and POPG (i.e., the first coordination numbers) in the pure membrane and membranes containing 5 and 100 mmol∙L-1 ions were calculated from the radial distribution functions. The results indicated that the primary binding site of these two ions on POPE and POPG at the concentrations studied was the negatively charged phosphate group. Thus, these results might explain the overcharging effects of both the Ca2+ and Mg2+ ions on the POPE/POPG liposomes. Moreover, as the Ca2+ concentration increased, the area per lipid of the lipid bilayers decreased, and the membrane thickness increased, while the Mg2+ ions had negligible effects on these membrane parameters. In addition, these ions had different effects on the orientation of the lipid head groups. These simulation results may be used to provide the possible explanations for the differences between Ca2+ and Mg2+ ions in DLS and zeta potential measurements at the atomic level. The experimental results and MD simulations provide insight into various biological processes regulated by divalent cations, such as membrane fusion.
  • 加载中
    1. [1]

      Edidin, M. Nat. Rev. Mol. Cell Biol. 2003, 4, 414. doi: 10.1038/nrm1102  doi: 10.1038/nrm1102

    2. [2]

      Clifton, L. A.; Holt, S. A.; Hughes, A. V.; Daulton, E. L.; Arunmanee, W.; Heinrich, F.; Khalid, S.; Jefferies, D.; Charlton, T. R.; Webster, J. R.; et al. Angew. Chem. Int. Ed. 2015, 54, 11952. doi: 10.1002/anie.201504287  doi: 10.1002/anie.201504287

    3. [3]

      Brown, L.; Wolf, J. M.; Prados-Rosales, R.; Casadevall, A. Nat. Rev. Microbiol. 2015, 13, 620. doi: 10.1038/nrmicro3480  doi: 10.1038/nrmicro3480

    4. [4]

      Zgurskaya, H. I.; Lopez, C. A.; Gnanakaran, S. ACS Infect. Dis. 2015, 1, 512. doi: 10.1021/acsinfecdis.5b00097  doi: 10.1021/acsinfecdis.5b00097

    5. [5]

      Travers, T.; Wang, K. J.; Lopez, C. A.; Gnanakaran, S. Res. Microbiol. 2018, 169, 414. doi: 10.1016/j.resmic.2018.01.002  doi: 10.1016/j.resmic.2018.01.002

    6. [6]

      Parkin, J.; Chavent, M.; Khalid, S. Biophys. J. 2015, 109, 461. doi: 10.1016/j.bpj.2015.06.050  doi: 10.1016/j.bpj.2015.06.050

    7. [7]

      Jones, H. E.; Holland, I. B.; Campbell, A. K. Cell Calcium 2002, 32, 183. doi: 10.1016/s0143416002001537  doi: 10.1016/s0143416002001537

    8. [8]

      Naseem, R.; Wann, K. T.; Holland, I. B.; Campbell, A. K. J. Mol. Biol. 2009, 391, 42. doi: 10.1016/j.jmb.2009.05.064  doi: 10.1016/j.jmb.2009.05.064

    9. [9]

      Saier, M. H., Jr. Microbiol. Mol. Biol. Rev. 2000, 64, 354. doi: 10.1128/mmbr.64.2.354-411.2000  doi: 10.1128/mmbr.64.2.354-411.2000

    10. [10]

      Shi, X.; Bi, Y.; Yang, W.; Guo, X.; Jiang, Y.; Wan, C.; Li, L.; Bai, Y.; Guo, J.; Wang, Y.; et al. Nature 2013, 493, 111. doi: 10.1038/nature11699  doi: 10.1038/nature11699

    11. [11]

      Boettcher, J. M.; Davis-Harrison, R. L.; Clay, M. C.; Nieuwkoop, A. J.; Ohkubo, Y. Z.; Tajkhorshid, E.; Morrissey, J. H.; Rienstra, C. M. Biochemistry 2011, 50, 2264. doi: 10.1021/bi1013694  doi: 10.1021/bi1013694

    12. [12]

      Akutsu, H.; Seelig, J. Biochemistry 1981, 20, 7366. doi: 10.1021/bi00529a007  doi: 10.1021/bi00529a007

    13. [13]

      Martens, S.; McMahon, H. T. Nat. Rev. Mol. Cell. Biol. 2008, 9, 543. doi: 10.1038/nrm2417  doi: 10.1038/nrm2417

    14. [14]

      Ortiz, A.; Killian, J. A.; Verkleij, A. J.; Wilschut, J. Biophys. J. 1999, 77, 2003. doi: 10.1016/s0006-3495(99)77041-4  doi: 10.1016/s0006-3495(99)77041-4

    15. [15]

      Friel, D. D.; Chiel, H. J. Trends Neurosci. 2008, 31, 8. doi: 10.1016/j.tins.2007.11.004  doi: 10.1016/j.tins.2007.11.004

    16. [16]

      Romani, A. M.; Scarpa, A. Front Biosci. 2000, 5, D720. doi: 10.2741/Romani  doi: 10.2741/Romani

    17. [17]

      Clifton, L. A.; Skoda, M. W. A.; Le Brun, A. P.; Ciesielski, F.; Kuzmenko, I.; Holt, S. A.; Lakey, J. H. Langmuir 2015, 31, 404. doi: 10.1021/la504407v  doi: 10.1021/la504407v

    18. [18]

      Montero, M.; Eydallin, G.; Viale, A. M.; Almagro, G.; Munoz, F. J.; Rahimpour, M.; Sesma, M. T.; Baroja-Fernandez, E.; Pozueta-Romero, J. Biochem. J. 2009, 424, 129. doi: 10.1042/bj20090980  doi: 10.1042/bj20090980

    19. [19]

      Balsera, M.; Goetze, T. A.; Kovacs-Bogdan, E.; Schurmann, P.; Wagner, R.; Buchanan, B. B.; Soll, J.; Bolter, B. J. Biol. Chem. 2009, 284, 2603. doi: 10.1074/jbc.m807134200  doi: 10.1074/jbc.m807134200

    20. [20]

      Kanipes, M. I.; Lin, S.; Cotter, R. J.; Raetz, C. R. J. Biol. Chem. 2001, 276, 1156. doi: 10.1074/jbc.m009019200  doi: 10.1074/jbc.m009019200

    21. [21]

      Gangola, P.; Rosen, B. P. J. Biol. Chem. 1987, 262, 12570.

    22. [22]

      Dominguez, D. C. Mol. Microbiol. 2004, 54, 291. doi: 10.1111/j.1365-2958.2004.04276.x  doi: 10.1111/j.1365-2958.2004.04276.x

    23. [23]

      Chaigne-Delalande, B.; Lenardo, M. J. Trends Immunol. 2014, 35, 332. doi: 10.1016/j.it.2014.05.001  doi: 10.1016/j.it.2014.05.001

    24. [24]

      Groisman, E. A.; Hollands, K.; Kriner, M. A.; Lee, E. J.; Park, S. Y.; Pontes, M. H. Annu. Rev. Genet. 2013, 47, 625. doi: 10.1146/annurev-genet-051313-051025  doi: 10.1146/annurev-genet-051313-051025

    25. [25]

      Suarez-Germa, C.; Domenech, O.; Montero, M. T.; Hernandez-Borrell, J. Biochim. Biophys. Acta-Biomembr. 2014, 1838, 842. doi: 10.1016/j.bbamem.2013.11.015  doi: 10.1016/j.bbamem.2013.11.015

    26. [26]

      Tu, Y.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z.; Huang, Q.; Fan, C.; Fang, H.; Zhou, R. Nat. Nanotechnol. 2013, 8, 594. doi: 10.1038/nnano.2013.125  doi: 10.1038/nnano.2013.125

    27. [27]

      Picas, L.; Carretero-Genevrier, A.; Montero, M. T.; Vazquez-Ibar, J. L.; Seantier, B.; Milhiet, P. E.; Hernandez-Borrell, J. Biochim. Biophys. Acta-Biomembr. 2010, 1798, 1014. doi: 10.1016/j.bbamem.2010.01.008  doi: 10.1016/j.bbamem.2010.01.008

    28. [28]

      Mao, Y.; Du, Y.; Cang, X.; Wang, J.; Chen, Z.; Yang, H.; Jiang, H. J. Phys. Chem. B 2013, 117, 850. doi: 10.1021/jp310163z  doi: 10.1021/jp310163z

    29. [29]

      Tsai, H. H. G.; Lai, W. X.; Lin, H. D.; Lee, J. B.; Juang, W. F.; Tseng, W. H. Biochim. Biophys. Acta-Biomembr. 2012, 1818, 2742. doi: 10.1016/j.bbamem.2012.05.029  doi: 10.1016/j.bbamem.2012.05.029

    30. [30]

      Chen, W. Q.; Guan, Y. J.; Zhang, X. P.; Deng, Y. Q. Acta Phys. -Chim. Sin. 2018, 34, 912.  doi: 10.3866/PKU.WHXB201801091

    31. [31]

      Mao, L.; Yang, L.; Zhang, Q.; Jiang, H.; Yang, H. Biochem. Biophys. Res. Commun. 2015, 468, 125. doi: 10.1016/j.bbrc.2015.10.149  doi: 10.1016/j.bbrc.2015.10.149

    32. [32]

      Liu, F. F.; Fan, Y. B.; Liu, Z.; Bai, S. Acta Phys. -Chim. Sin. 2017, 33, 1905.  doi: 10.3866/PKU.WHXB201704274

    33. [33]

      Liu, F. F.; Dong, X. Y.; Sun, Y. Acta Phys. -Chim. Sin. 2010, 26, 1643.  doi: 10.3866/PKU.WHXB20100613

    34. [34]

      Zhao, Y. S.; Zheng, Q. C.; Zhang, H. X.; Chu, H. Y.; Sun, J. Z. Acta Phys. -Chim. Sin. 2009, 25, 417.  doi: 10.3866/PKU.WHXB20090304

    35. [35]

      Melcrova, A.; Pokorna, S.; Pullanchery, S.; Kohagen, M.; Jurkiewicz, P.; Hof, M.; Jungwirth, P.; Cremer, P. S.; Cwiklik, L. Sci. Rep. 2016, 6, 38035. doi: 10.1038/srep38035  doi: 10.1038/srep38035

    36. [36]

      Domingues, M. M.; Inacio, R. G.; Raimundo, J. M.; Martins, M.; Castanho, M. A.; Santos, N. C. Biopolymers 2012, 98, 338. doi: 10.1002/bip.22095  doi: 10.1002/bip.22095

    37. [37]

      Luo, S. Q.; Wang, M. N.; Zhao, W. W.; Wang, Y. L. Acta Phys. -Chim. Sin. 2019, 35, 766.  doi: 10.3866/PKU.WHXB201809038

    38. [38]

      Liu, H. C.; Feng, Y. J. Acta Phys. -Chim. Sin. 2019, 35, 408.  doi: 10.3866/PKU.WHXB201803051

    39. [39]

      Wei, B. Z.; Guo, Z. Y.; Wang, F.; Huang, A. M.; Ma, L. Acta Phys. -Chim. Sin. 2018, 34, 185.  doi: 10.3866/PKU.WHXB201707175

    40. [40]

      Hendrich, A. B.; Malon, R.; Pola, A.; Shirataki, Y.; Motohashi, N.; Michalak, K. Eur. J. Pharm. Sci. 2002, 16, 201. doi: 10.1016/s0928-0987(02)00106-9  doi: 10.1016/s0928-0987(02)00106-9

    41. [41]

      Wu, E. L.; Cheng, X.; Jo, S.; Rui, H.; Song, K. C.; Davila-Contreras, E. M.; Qi, Y.; Lee, J.; Monje-Galvan, V.; Venable, R. M.; et al. J. Comput. Chem. 2014, 35, 1997. doi: 10.1002/jcc.23702  doi: 10.1002/jcc.23702

    42. [42]

      Abraham, M. J.; Murtola, T.; Schulz, R.; Páll, S.; Smith, J. C.; Hess, B.; Lindahl, E. SoftwareX 2015, 1-2, 19. doi: 10.1016/j.softx.2015.06.001  doi: 10.1016/j.softx.2015.06.001

    43. [43]

      MacKerell, A. D.; Bashford, D.; Bellott, M.; Dunbrack, R. L.; Evanseck, J. D.; Field, M. J.; Fischer, S.; Gao, J.; Guo, H.; Ha, S.; et al. J. Phys. Chem. B 1998, 102, 3586. doi: 10.1021/jp973084f  doi: 10.1021/jp973084f

    44. [44]

      Bussi, G.; Donadio, D.; Parrinello, M. J. Chem. Phys. 2007, 126, 014101. doi: 10.1063/1.2408420  doi: 10.1063/1.2408420

    45. [45]

      Nosé, S. J. Chem. Phys. 1984, 81, 511. doi: 10.1063/1.447334  doi: 10.1063/1.447334

    46. [46]

      Nosé, S.; Klein, M. L. Mol. Phys. 1983, 50, 1055. doi: 10.1080/00268978300102851  doi: 10.1080/00268978300102851

    47. [47]

      Miyamoto, S.; Kollman, P. A. J. Comput. Chem. 1992, 13, 952. doi: 10.1002/jcc.540130805  doi: 10.1002/jcc.540130805

    48. [48]

      Hess, B.; Bekker, H.; Berendsen, H. J. C.; Fraaije, J. G. E. M. J. Comput. Chem. 1997, 18, 1463. doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h  doi: 10.1002/(sici)1096-987x(199709)18:12<1463::aid-jcc4>3.0.co;2-h

    49. [49]

      Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98, 10089. doi: 10.1063/1.464397  doi: 10.1063/1.464397

    50. [50]

      Guixa-Gonzalez, R.; Rodriguez-Espigares, I.; Ramirez-Anguita, J. M.; Carrio-Gaspar, P.; Martinez-Seara, H.; Giorgino, T.; Selent, J. Bioinformatics 2014, 30, 1478. doi: 10.1093/bioinformatics/btu037  doi: 10.1093/bioinformatics/btu037

    51. [51]

      Martin-Molina, A.; Rodriguez-Beas, C.; Faraudo, J. Biophys. J. 2012, 102, 2095. doi: 10.1016/j.bpj.2012.03.009  doi: 10.1016/j.bpj.2012.03.009

    52. [52]

      Bockmann, R. A.; Grubmuller, H. Angew. Chem. Int. Ed. 2004, 43, 1021. doi: 10.1002/anie.200352784  doi: 10.1002/anie.200352784

    53. [53]

      Rand, R. P.; Fuller, N.; Parsegian, V. A.; Rau, D. C. Biochemistry 1988, 27, 7711. doi: 10.1021/bi00420a021  doi: 10.1021/bi00420a021

    54. [54]

      Yang, H.; Xu, Y.; Gao, Z.; Mao, Y.; Du, Y.; Jiang, H. J. Phys. Chem B 2010, 114, 16978. doi: 10.1021/jp1091569  doi: 10.1021/jp1091569

  • 加载中
    1. [1]

      Yuwen ZhuXiang DengYan WuBaode ShenLingyu HangYuye XueHailong Yuan . Formation mechanism of herpetrione self-assembled nanoparticles based on pH-driven method. Chinese Chemical Letters, 2025, 36(1): 109733-. doi: 10.1016/j.cclet.2024.109733

    2. [2]

      Jinqi YangXiaoxiang HuYuanyuan ZhangLingyu ZhaoChunlin YueYuan CaoYangyang ZhangZhenwen Zhao . Direct observation of natural products bound to protein based on UHPLC-ESI-MS combined with molecular dynamics simulation. Chinese Chemical Letters, 2025, 36(5): 110128-. doi: 10.1016/j.cclet.2024.110128

    3. [3]

      Yinghui Xia Yixi Lin Zhenming Xu . Cation potential guiding structural regulation of lithium halide superionic conductors. Chinese Journal of Structural Chemistry, 2025, 44(3): 100448-100448. doi: 10.1016/j.cjsc.2024.100448

    4. [4]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    5. [5]

      Zhenming Xu Yibo Wang Zhenhui Liu Duo Chen Mingbo Zheng Laifa Shen . Experimental Design of Computational Materials Science and Computational Chemistry Courses Based on the Bohrium Scientific Computing Cloud Platform. University Chemistry, 2025, 40(3): 36-41. doi: 10.12461/PKU.DXHX202403096

    6. [6]

      Zhi Zhou Yu-E Lian Yuqing Li Hui Gao Wei Yi . New Insights into the Molecular Mechanism Behind Clinical Tragedies of “Cephalosporin with Alcohol”. University Chemistry, 2025, 40(3): 42-51. doi: 10.12461/PKU.DXHX202403104

    7. [7]

      Sanmei WangYong ZhouHengxin FangChunyang NieChang Q SunBiao Wang . Constant-potential simulation of electrocatalytic N2 reduction over atomic metal-N-graphene catalysts. Chinese Chemical Letters, 2025, 36(3): 110476-. doi: 10.1016/j.cclet.2024.110476

    8. [8]

      Bingwei WangYihong DingXiao Tian . Benchmarking model chemistry composite calculations for vertical ionization potential of molecular systems. Chinese Chemical Letters, 2025, 36(2): 109721-. doi: 10.1016/j.cclet.2024.109721

    9. [9]

      Kai YeZhicheng YeChuantao WangZhilai LuoCheng LianChunyan Bao . Artificial signal transduction triggered by molecular photoisomerization in lipid membranes. Chinese Chemical Letters, 2025, 36(4): 110033-. doi: 10.1016/j.cclet.2024.110033

    10. [10]

      Shiyu HouMaolin SunLiming CaoChaoming LiangJiaxin YangXinggui ZhouJinxing YeRuihua Cheng . Computational fluid dynamics simulation and experimental study on mixing performance of a three-dimensional circular cyclone-type microreactor. Chinese Chemical Letters, 2024, 35(4): 108761-. doi: 10.1016/j.cclet.2023.108761

    11. [11]

      Zhibin RenShan LiXiaoying LiuGuanghao LvLei ChenJingli WangXingyi LiJiaqing Wang . Penetrating efficiency of supramolecular hydrogel eye drops: Electrostatic interaction surpasses ligand-receptor interaction. Chinese Chemical Letters, 2024, 35(11): 109629-. doi: 10.1016/j.cclet.2024.109629

    12. [12]

      Cheng WangJi WangDong LiuZhi-Ling Zhang . Advances in virus-host interaction research based on microfluidic platforms. Chinese Chemical Letters, 2024, 35(12): 110302-. doi: 10.1016/j.cclet.2024.110302

    13. [13]

      Jinli Chen Shouquan Feng Tianqi Yu Yongjin Zou Huan Wen Shibin Yin . Modulating Metal-Support Interaction Between Pt3Ni and Unsaturated WOx to Selectively Regulate the ORR Performance. Chinese Journal of Structural Chemistry, 2023, 42(10): 100168-100168. doi: 10.1016/j.cjsc.2023.100168

    14. [14]

      Wen SuSiying LiuQingfu ZhangZhongyan ZhouNa WangLei Yue . Temperature-controlled electrospray ionization tandem mass spectrometry study on protein/small molecule interaction. Chinese Chemical Letters, 2025, 36(5): 110237-. doi: 10.1016/j.cclet.2024.110237

    15. [15]

      Yanyu JinWenzhe SiXing YuanHongjun ChengBin ZhouLi CaiYu WangQibao WangJunhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260

    16. [16]

      Man Wu Chuandong Jia . A light-powered molecular pump achieving transmembrane concentration gradient. Chinese Journal of Structural Chemistry, 2025, 44(4): 100452-100452. doi: 10.1016/j.cjsc.2024.100452

    17. [17]

      Yan-Bo LiYi LiLiang Yin . Copper(Ⅰ)-catalyzed diastereodivergent construction of vicinal P-chiral and C-chiral centers facilitated by dual "soft-soft" interaction. Chinese Chemical Letters, 2024, 35(7): 109294-. doi: 10.1016/j.cclet.2023.109294

    18. [18]

      Heng GaoZhaocong ChengGuangshui TuZonglin QiuXieyi XiaoHaotian ZhouHandou ZhengHaiyang Gao . Thermally robust bis(imino)pyridyl iron catalysts for ethylene polymerization: Synergy effects of weak π-π interaction, steric bulk, and electronic tuning. Chinese Chemical Letters, 2025, 36(5): 110762-. doi: 10.1016/j.cclet.2024.110762

    19. [19]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    20. [20]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

Metrics
  • PDF Downloads(10)
  • Abstract views(391)
  • HTML views(30)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return