Citation: XUE Kai, YAN Minnan, PAN Fei, TIAN Mengying, PAN Xudong, ZHANG Hongmei. Single-Layer Organic Light-Emitting Devices with C60 and MoO3 Mixed Materials as Hole Injection Layer[J]. Acta Physico-Chimica Sinica, ;2019, 35(8): 896-902. doi: 10.3866/PKU.WHXB201810064 shu

Single-Layer Organic Light-Emitting Devices with C60 and MoO3 Mixed Materials as Hole Injection Layer

  • Corresponding author: ZHANG Hongmei, iamhmzhang@njupt.edu.cn
  • Received Date: 30 October 2018
    Revised Date: 10 December 2018
    Accepted Date: 11 December 2018
    Available Online: 14 August 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (61674081, 51333007)the National Natural Science Foundation of China 61674081the National Natural Science Foundation of China 51333007

  • Multilayer phosphorescent organic lighting-emitting diodes (PHOLEDs) with complicated device configurations have greatly increased the complexity of manufacturing and the fabrication cost. Therefore, there is strong incentive to develop simplified OLEDs, such as a single-layer device that has the structure of anode/hole injection layer (HIL)/emissive layer/electron injection layer/cathode. However, because of the absence of a carrier transport layer, the single-layer device suffers from severe charge injection difficulties and unbalanced carrier transport. Hence, the performances of single-layer devices reported so far have not been satisfactory. It has been proved that the modification of the electrode/organic interface could influence carrier injection to improve the device performance in multilayer PHOLEDs. Modification of the electrode/organic interface is more essential for achieving high-performance single-layer OLEDs. In this work, efficient green phosphorescent single-layer OLEDs based on the structure of indium tin oxide (ITO)/C60 (1.2 nm):MoO3 (0.4 nm)/1, 3, 5-tris(1-phenyl-1H-benzimidazol-2-yl)benzene (TPBi):fac-tris(2-phenylpyridine)iridium [Ir(ppy)3]/LiF (0.7 nm)/Al (120 nm) were fabricated. C60, MoO3, and C60:MoO3 were applied as the HILs, respectively, for comparison. The layer of TPBi played a dual role of host and electron-transporting material within the emission layer. Thus, the properties of the HILs play an important role in the adjustment of electron/hole injection to attain transport balance of the charge carriers in single-layer OLEDs with electron-transporting hosts. It is found that appropriate adjustment of the HIL is a key factor to achieve high-efficiency single-layer OLEDs. The large affinity of MoO3 (6.37 eV), inducing electron transfer from the highest occupied molecular orbital of C60 to MoO3, results in the formation of C60 cations and induces the decrease of the valence from Mo+6 to Mo+5; therefore, C60:MoO3 can adjust the hole injection properties well. Finally, a single-layer OLED with a maximum current efficiency of 35.88 cd∙A−1 was achieved. Compared with devices with MoO3 (28.99 cd∙A−1) or C60 (10.46 cd∙A−1) as HILs, the device performance was improved by 24% and 243%, respectively. Overall, a novel and effective method of using different mixed ratios of C60 and MoO3 as the HIL to realize effective charge carrier regulation is proposed, and it is of great significance for fabricating high-performance single-layer OLEDs.
  • 加载中
    1. [1]

      Liu, Z. W.; Helander, M. G.; Wang, Z. B.; Lu, Z. H. Org. Electron. 2009, 10, 1146. doi:10.1016/j.orgel.2009.06.002  doi: 10.1016/j.orgel.2009.06.002

    2. [2]

      Yin, Y. M.; Wen, X. M.; Yu, J.; Zhang, L.T.; Xie, W. F. IEEE Photonics Technol. Lett. 2013, 25, 2205. doi:10.1109/LPT.2013.2283215  doi: 10.1109/LPT.2013.2283215

    3. [3]

      Liu, Z. W.; Helander, M. G.; Wang, Z. B.; Lu, Z. H. Org. Electron. 2013, 14, 852. doi:10.1016/j.orgel.2013.01.009  doi: 10.1016/j.orgel.2013.01.009

    4. [4]

      Zeng, W. J.; Bi, R.; Zhang, H. M.; Huang, W. J. Appl. Phys. 2013, 116, 224502. doi:10.1063/1.4903752  doi: 10.1063/1.4903752

    5. [5]

      Zuo, L. M.; Han, G.G.; Sheng, R.; Xue, K. W.; Duan, Y.; Chen, P.; Zhao, Y. RSC Adv. 2016, 6, 55017. doi:10.1039/c6ra07741b  doi: 10.1039/c6ra07741b

    6. [6]

      Wu, Z. X.; Yang, Z. L.; Xue, K.; Fei, C. C.; Wang, F.; Yan, M. N.; Zhang, H. M.; Ma, D. G.; Huang, W. RSC Adv. 2018, 8, 11255. doi:10.1039/c7ra13355c  doi: 10.1039/c7ra13355c

    7. [7]

      Han, T. H.; Choi, M. R.; Woo, S. H.; Min, S. Y.; Lee, C. L.; Lee, T. W. Adv. Mater. 2012, 24, 1487. doi:10.1002/adma.201104316  doi: 10.1002/adma.201104316

    8. [8]

      Han, T. H.; Kim, Y. H.; Kim, M. H.; Song, W.; Lee, T. W. ACS Appl. Mater. Interfaces 2016, 8, 6152. doi:10.1021/acsami.5b11791  doi: 10.1021/acsami.5b11791

    9. [9]

      Wang, Y. P.; Wang, W. J.; Huang, Z. J.; Wang, H. H.; Zhao, J. T.; Yu, J. H.; Ma, D. G. J. Mater. Chem. C 2018, 6, 7042. doi:10.1039/c8tc01639a  doi: 10.1039/c8tc01639a

    10. [10]

      Miao, Y. Q.; Wang, K. X.; Gao, L.; Zhao, B.; Wang, H.; Zhu, F. R.; Xu, B. S.; Ma, D. G. J. Mater. Chem. C 2018, 6, 8122. doi:10.1039/c8tc02479k  doi: 10.1039/c8tc02479k

    11. [11]

      Zhang, T. M.; Shi, C. S.; Zhao, C. Y.; Wu, Z. B.; Chen, J. S.; Xie, Z. Y.; Ma, D. G. ACS Appl. Mater. Interfaces 2018, 10, 8148. doi:10.1021/acsami.8b00513  doi: 10.1021/acsami.8b00513

    12. [12]

      Kim, D. H.; Lee, W. H.; Jesuraj, P. J.; Hafeez, H.; Lee, J. C.; Choi, D. K.; Song, A.; Chung, K. B.; Bae, T. S.; Song, M.; et al. Org. Electron. 2018, 61, 343. doi:10.1016/j.orgel.2018.06.013  doi: 10.1016/j.orgel.2018.06.013

    13. [13]

      Tse, S. C.; Tsung, K. K.; So, S. K. Appl. Phys. Lett. 2007, 90, 213502. doi:10.1063/1.2740110  doi: 10.1063/1.2740110

    14. [14]

      Kasparek, C.; Rorich, I.; Blom, P. W. M.; Wetzelaer, G. J. A. H. J. Appl. Phys. 2018, 123, 024504. doi:10.1063/1.5007329  doi: 10.1063/1.5007329

    15. [15]

      Kim, J. H.; Chen, Y.; Liu, R.; So, F. Org. Electron. 2014, 15, 2381. doi:10.1016/j.orgel.2014.07.012  doi: 10.1016/j.orgel.2014.07.012

    16. [16]

      Choi, W. H.; Cheung, C. H.; So, S. K. Org. Electron. 2010, 11, 872. doi:10.1016/j.orgel.2010.02.001  doi: 10.1016/j.orgel.2010.02.001

    17. [17]

      Zheng, H.; Zhang, F.; Zhou, N. L.; Su, M. N.; Li, X. G.; Xiao, Y.; Wang, S. R. Org. Electron. 2018, 56, 89. doi:10.1016/j.orgel.2018.01.038  doi: 10.1016/j.orgel.2018.01.038

    18. [18]

      Zhu, W. J.; Chen, X. L.; Chang, J. F.; Yu, R. M.; Li, H. R.; Liang, D.; Wu, X. Y.; Wang, Y. S.; Lu, C. Z. J. Mater. Chem. C 2018, 6, 7242. doi:10.1039/c8tc01005f  doi: 10.1039/c8tc01005f

    19. [19]

      Tsai, C. T.; Liu, Y. H.; Tang, J. F.; Kao, P. C.; Chiang, C. H.; Chu, S. Y. Synth. Met. 2018, 243, 121. doi:10.1016/j.synthmet.2018.06.008  doi: 10.1016/j.synthmet.2018.06.008

    20. [20]

      Zhang, X. W.; Zheng, Q. H.; Tang, Z. Y.; Li, W. S.; Zhang, Y.; Xu, K.; Xue, X. G.; Xu, J. W.; Wang, H.; Wei, B. Appl. Phys. Lett. 2018, 112, 083302. doi:10.1063/1.5016411  doi: 10.1063/1.5016411

    21. [21]

      Xu, H. T.; Zhou, X. J. Appl. Phys. 2013, 114, 244505. doi:10.1063/1.4852835  doi: 10.1063/1.4852835

    22. [22]

      You, H.; Dai, Y. F.; Zhang, Z. Q.; Ma, D. G. J. Appl. Phys. 2007, 101, 026105. doi:10.1063/1.2430511  doi: 10.1063/1.2430511

    23. [23]

      Chiu, T. L.; Chuang, Y. T. J. Nanosci. Nanotech. 2015, 15, 9207. doi:10.1166/jnn.2015.11415  doi: 10.1166/jnn.2015.11415

    24. [24]

      Lv, Z. Y.; Deng, Z. B.; Xu, D. H.; Li, X. F.; Jia, Y. Displays 2009, 30, 23. doi:10.1016/j.displa.2008.10.001  doi: 10.1016/j.displa.2008.10.001

    25. [25]

      Niu, L. B.; Guan, Y. X. Acta Phys. Sin. 2009, 58, 4931.  doi: 10.7498/aps.58.4931

    26. [26]

      Lee, J. Y.; Kwon, J. H. Appl. Phys. Lett. 2005, 86, 063514. doi:10.1063/1.1861962  doi: 10.1063/1.1861962

    27. [27]

      Yuan, Y.; Grozea, D.; Lu, Z. H. Appl. Phys. Lett. 2005, 86, 143509. doi:10.1063/1.1899241  doi: 10.1063/1.1899241

    28. [28]

      Li, X. C.; Xie, F. X.; Zhang, S. Q.; Hou, J. H.; Choy, W. C. H. Adv. Funct. Mater. 2014, 24, 7348. doi:10.1002/adfm.201401969  doi: 10.1002/adfm.201401969

    29. [29]

      Yang, J. P.; Wang, W. Q.; Cheng, L. W.; Li, Y. Q.; Tang, J. X.; Kera, S.; Ueno, N.; Zeng, X. H. J. Phys.:Condens. Matter 2016, 28, 185502. doi:10.1088/0953-8984/28/18/185502  doi: 10.1088/0953-8984/28/18/185502

    30. [30]

      Zhang, H. M.; Fu, Q.; Zeng, W. J.; Ma, D. G. J. Mater. Chem. C 2014, 2, 9620. doi:10.1039/c4tc01310g  doi: 10.1039/c4tc01310g

    31. [31]

      Pandey, R.; Gunawan, A. A.; Mkhoyan, K. A.; Holmes, R. J. Adv. Funct. Mater. 2012, 22, 617. doi:10.1002/adfm.201101948  doi: 10.1002/adfm.201101948

    32. [32]

      Lee, H.; Kim, J. Y.; Lee, C. Int. J. Photoenergy 2012, 2012, 581421 doi:10.1155/2012/581421  doi: 10.1155/2012/581421

    33. [33]

      Shin, W. J.; Lee, J. Y.; Kim, J. C.; Yoon, T. H.; Kim, T. S.; Song, O. K. Org. Electron. 2008, 9, 333. doi:10.1016/j.orgel.2007.12.001  doi: 10.1016/j.orgel.2007.12.001

  • 加载中
    1. [1]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    2. [2]

      Zehua Zhang Haitao Yu Yanyu Qi . 多重共振TADF分子的设计策略. Acta Physico-Chimica Sinica, 2025, 41(1): 2309042-. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    4. [4]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    5. [5]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    6. [6]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

    7. [7]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    10. [10]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    11. [11]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    12. [12]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    13. [13]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    14. [14]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    15. [15]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    16. [16]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    17. [17]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    18. [18]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    19. [19]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    20. [20]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

Metrics
  • PDF Downloads(6)
  • Abstract views(657)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return