Swollen Surfactant Micelles: Properties and Applications
- Corresponding author: FENG Yujun, yjfeng@scu.edu.cn
Citation:
GONG Lingyan, LIAO Guangzhi, CHEN Quansheng, LUAN Hexin, FENG Yujun. Swollen Surfactant Micelles: Properties and Applications[J]. Acta Physico-Chimica Sinica,
;2019, 35(8): 816-828.
doi:
10.3866/PKU.WHXB201810060
Lindman, B.; Wennerström, H. Micelles; Springer: Heidelberg, 1980; pp. 1-83.
Rosen, M. J.; Kunjappu, J. T. Surfactants and Interfacial Phenomena; John Wiley & Sons: New Jersey, 2012; pp. 5-67.
Zana, R. Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles, and Lyotropic Phases; CRC Press: Boca Raton, 2005; pp. 34-87.
Christian, S. D.; Scamehorn, J. F. Solubilization in Surfactant Aggregates; CRC Press: Boca Raton, 1995; pp. 334-357.
Kralchevsky, P. A.; Denkov, N. D.; Todorov, P. D.; Marinov, G. S.; Broze, G.; Mehreteab, A. Langmuir 2002, 18, 7887. doi: 10.1021/la020366k
doi: 10.1021/la020366k
Christov, N. C.; Denkov, N. D.; Kralchevsky, P. A.; Broze, G.; Mehreteab, A. Langmuir 2002, 18, 7880. doi: 10.1021/la020365s
doi: 10.1021/la020365s
Kamal, M. S.; Hussein, I. A.; Sultan, A. S. Energy & Fuels 2017, 31, 7701. doi: 10.1021/acs.energyfuels.7b00353
doi: 10.1021/acs.energyfuels.7b00353
Gupta, S. P.; Trushenski, S. P. SPE Prod. Oper. 1979, 19, 116. doi: 10.2118/7063-PA
doi: 10.2118/7063-PA
Volkering, F.; Breure, A. M.; Rulkens, W. H. Biodegradation 1997, 8, 401. doi: 10.1023/a:1008291130109
doi: 10.1023/a:1008291130109
McBain, M. E. L.; Hutchinson, E. Solubilization and Related Phenomena; Academic Press: New York, 1955; pp. 379-380.
Merrill, R.C., Jr.; McBain, J. W. J. Phys. Chem.1942, 46, 10. doi: 10.1021/j150415a002
doi: 10.1021/j150415a002
Chiou, C. T.; Malcolm, R. L.; Brinton, T. I.; Kile, D. E. Environ. Sci. Technol. 1986, 20, 502. doi: 10.1021/es00147a010
doi: 10.1021/es00147a010
Blair, C. M.; Lehmann, S. Process for increasing productivity of subterranean oil-bearing strata. US Patent 2356205, August 22, 1944.
Klevens, H. B. J. Chem. Phys. 1949, 17, 1004. doi: 10.1063/1.1747069
doi: 10.1063/1.1747069
Gogarty, W. B.; Tosch, W. C. SPE Prod. Oper. 1968, 20, 1407. doi: 10.2118/1847-1-PA
doi: 10.2118/1847-1-PA
Carroll, B. J. J. Colloid Interface Sci. 1981, 79, 126. doi: 10.1016/0021-9797(81)90055-2
doi: 10.1016/0021-9797(81)90055-2
Edwards, D. A.; Luthy, R. G.; Liu, Z. Environ. Sci. Technol. 1991, 25, 127. doi: 10.1021/es00013a014
doi: 10.1021/es00013a014
Cui, Z, G. Surfactant, Colloid and Interface Chemistry; Chemical Industry Press: Beijing, 2013; pp. 21-24.
Gong, Y. J.; Xue, Y. Y. J. Northwest Univ. 2000, 30, 28.
doi: 10.16152/j.cnki.xdxbzr.2000.01.012
Varela, A. S.; Macho, M. I. S.; González, A. G. Colloid Polym. Sci. 1995, 273, 876. doi: 10.1007/bf00657637
doi: 10.1007/bf00657637
Hickok, R. S.; Wedge, S. A.; Hansen, A. L.; Morris, K. F. Magn. Reson. Chem. 2002, 40, 755. doi: 10.1002/mrc.1099
doi: 10.1002/mrc.1099
Mourya, V.; Inamdar, N.; Nawale, R.; Kulthe, S. Ind. J. Pharm. Edu. Res. 2011, 45, 128.
Zhou, Z.; Chaibundit, C.; D'emanuele, A.; Lennon, K.; Attwood, D.; Booth, C. Int. J. Pharm. 2008, 354, 82. doi: 10.1016/j.ijphann.2007.10.028
doi: 10.1016/j.ijphann.2007.10.028
Dong, Y.; Jin, Y.; Wei, D. Polym. Int. 2007, 56, 14. doi: 10.1002/pi.2101
doi: 10.1002/pi.2101
Nagarajan, R. Curr. Opin. J. Colloid Interface Sci. 1997, 2, 282. doi: 10.1016/S1359-0294(94)80037-4
doi: 10.1016/S1359-0294(94)80037-4
Shen, Z.; Zhao, Z. G.; Wang, G. T. Colloid and Surface Chemistry, 3nd ed.; Chemical Industry Press: Beijing, 2004; pp. 35-40.
Rangel-Yagui, C. O.; Pessoa, A., Jr.; Tavares, L. C. J. Pharm. Pharm. Sci. 2005, 8, 147.
Harkins, W. D.; Mattoon, R. W.; Corrin, M. L. J. Colloid Sci. 1946, 1, 105. doi: 10.1016/0095-8522(46)90010-4
doi: 10.1016/0095-8522(46)90010-4
Suratkar, V.; Mahapatra, S. J. Colloid Interface Sci. 2000, 225, 32. doi: 10.1006/jcis.2000.6718
doi: 10.1006/jcis.2000.6718
Totland, C.; Blokhus, A. M. Phys. Chem. Chem. Phys. 2017, 19, 7708. doi: 10.1039/c6cp08506g
doi: 10.1039/c6cp08506g
Méndez-Bermúdez, J. G.; Dominguez, H. J. Mol. Model. 2016, 22, 33. doi: 10.1007/s00894-015-2904-x
doi: 10.1007/s00894-015-2904-x
Chen, Y. X.; Ma, J. G.; Xu, S. Y. J. Wuxi Univ. Light Ind. 2001, 20, 238.
doi: 10.3321/j.issn:1673.2001.03.004
Mukerjee, P.; Cardinal, J. R. J. Phys. Chem. 1978, 82, 1620. doi: 10.1021/j100503a010
doi: 10.1021/j100503a010
Zhao, Z. G. Fundamentals of Interface Chemistry; Chemical Industry Press: Beijing, 2004; pp. 12-20.
Menger, F. M. Acc. Chem. Res. 1979, 12, 111. doi: 10.1021/ar50136a001
doi: 10.1021/ar50136a001
Morishima, K.; Sugawara, S.; Yoshimura, T.; Shibayama, M. Langmuir 2017, 33, 6084. doi: 10.1021/acs.langmuir.7b00902
doi: 10.1021/acs.langmuir.7b00902
Zheng, Y.; Lin, Z.; Zakin, J. L.; Talmon, Y.; Davis, H. T.; Scriven, L. E. J. Phys. Chem. B 2000, 104, 5263. doi: 10.1021/jp0002998
doi: 10.1021/jp0002998
Rao, J.; McClements, D. J. Food Hydrocolloids 2012, 26, 268. doi: 10.1016/j.foodhyd.2011.06.002
doi: 10.1016/j.foodhyd.2011.06.002
Joshi, J. V.; Aswal, V. K.; Goyal, P. S. AIP Conf. Proc. 2008, 989, 259. doi: 10.1063/1.2906080
doi: 10.1063/1.2906080
Putra, E. G. R.; Seong, B. S.; Ikram, A. Nucl. Instrum. Methods Phys. Res. 2009, 600, 291. doi: 10.1016/j.nima.2008.11.047
doi: 10.1016/j.nima.2008.11.047
Hoffmann, H.; Ulbricht, W. J. Colloid Interface Sci. 1989, 129, 388. doi: 10.1016/0021-9797(89)90453-0
doi: 10.1016/0021-9797(89)90453-0
Molchanov, V. S.; Philippova, O. E.; Khokhlov, A. R.; Kovalev, Y. A.; Kuklin, A. I. Langmuir 2007, 23, 105. doi: 10.1021/la061612l
doi: 10.1021/la061612l
Shibaev, A. V.; Molchanov, V. S.; Philippova, O. E. J. Phys. Chem. B 2015, 119, 15938. doi: 10.1021/acs.jpcb.5b10505
doi: 10.1021/acs.jpcb.5b10505
Shibaev, A. V.; Tamm, M. V.; Molchanov, V. S.; Rogachev, A. V.; Kuklin, A. I.; Dormidontova, E. E.; Philippova, O. E. Langmuir 2014, 30, 3705. doi: 10.1021/la500484e
doi: 10.1021/la500484e
Fogang, L. T.; Sultan, A. S.; Kamal, M. S. RSC Adv. 2018, 8, 4455. doi: 10.1039/C7RA12538K
doi: 10.1039/C7RA12538K
Sharma, S. C.; Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. J. Phys. Chem. B 2009, 113, 1615. doi: 10.1021/jp808390c
doi: 10.1021/jp808390c
Sato, T.; Acharya, D. P.; Kaneko, M.; Aramaki, K.; Singh, Y.; Ishitobi, M.; Kunieda, H. J. Dispersion Sci. Technol. 2006, 27, 611. doi: 10.1080/01932690600660632
doi: 10.1080/01932690600660632
Yoshimura, T.; Ichinokawa, T.; Kaji, M.; Esumi, K. Colloids Surf. A 2006, 273, 208. doi: 10.1016/j.colsurfa.2005.08.023
doi: 10.1016/j.colsurfa.2005.08.023
Erhardt, R.; Böker, A.; Zettl, H.; Kaya, H. Macromolecules 2001, 34, 1069. doi: 10.1021/ma000670p
doi: 10.1021/ma000670p
Riess, G. Block Copolymers. Encyclopedia of Polymer Science and Engineering. Wiley: San Francisco, 1985; pp. 324-434.
Ganguly, R.; Kunwar, A.; Kota, S.; Kumar, S.; Aswal, V. K. Colloids Surf. A 2018, 537, 478. doi: 10.1016/j.colsurfa.2017.10.045
doi: 10.1016/j.colsurfa.2017.10.045
Ganguly, R.; Kunwar, A.; Dutta, B.; Kumar, S.; Barick, K. C.; Ballal, A. Colloids Surf. B 2017, 152, 176. doi: 10.1016/j.colsurfb.2017.01.023
doi: 10.1016/j.colsurfb.2017.01.023
Liu, T.; Wang, H. Y.; Xu, G. Y. Acta Phys. -Chim. Sin. 2016, 32, 1072.
doi: 10.3866/PKU.WHXB201603071
Shinoda, K.; Friberg, S. Adv. Colloid Interface Sci. 1975, 4, 281. doi: 10.1016/0001-8686(75)85006-8
doi: 10.1016/0001-8686(75)85006-8
Chen, P. Molecular Interfacial Phenomena of Polymers and Biopolymers; CRC Press: Boca Raton, 2005; pp. 552-572.
Li, G. Z.; Guo, R. Microemulsion and Application; China Petrochemical Press, Beijing, 1995; pp. 12-21.
Ravey, J. C.; Buzier, M. J. Colloid Interface Sci. 1987, 116, 30. doi: 10.1016/0021-9797(87)90094-4
doi: 10.1016/0021-9797(87)90094-4
Winsor, P. A. Trans. Faraday Soc. 1948, 44, 376. doi: 10.1039/tf9484400376
doi: 10.1039/tf9484400376
Adamson, A. W. J. Colloid Interface Sci. 1969, 29, 261. doi: 10.1016/0021-9797(69)90195-7
doi: 10.1016/0021-9797(69)90195-7
Stoeckenius, W.; Schulman, J. H.; Prince, L. M. Kolloid-Z. 1960, 169, 170. doi: 10.1007/BF01502567
doi: 10.1007/BF01502567
Schulman, J. H.; Riley, D. P. J. Colloid Sci. 1948, 3, 383. doi: 10.1016/0095-8522(48)90024-5
doi: 10.1016/0095-8522(48)90024-5
Siano, D. B. J. Colloid Interface Sci. 1983, 93, 1. doi: 10.1016/0021-9797(83)90377-6
doi: 10.1016/0021-9797(83)90377-6
Shah, D. O.; Bansal, V. K.; Chan, K.; Hsieh, W. C. Improved Oil Recovery by Surfactant & Polymer Flooding; Elsevier: Netherlands, 1977; pp. 293-324.
Schulman, J. H.; Stoeckenius, W.; Prince, L. M. J. Phys. Chem. 1959, 63, 1677. doi: 10.1021/j150580a027
doi: 10.1021/j150580a027
Tehrani-Bagha, A.; Holmberg, K. Materials 2013, 6, 580. doi: 10.3390/ma6020580
doi: 10.3390/ma6020580
Hu, X. Q.; Zhao, T. H.; Zhang, R. Surfactant Science and Its Application in Oil and Gas Field Development; Chemical Industry Press: Beijing, 2013; pp. 112-135.
Kolthoff, I. M.; Stricks, W. J. Phys. Colloid Chem. 1948, 52, 915. doi: 10.1021/j150462a001
doi: 10.1021/j150462a001
Binana-Limbelé, W.; Zana, R. J. Colloid Interface Sci. 1988, 121, 81. doi: 10.1016/0021-9797(88)90410-9
doi: 10.1016/0021-9797(88)90410-9
Klevens, H. B. J. Am. Chem. Soc. 1950, 72, 3780. doi: 10.1021/ja01164a124
doi: 10.1021/ja01164a124
Pramauro, E.; Prevot, A. B. Int. Res. J. Pure Appl. Chem.1995, 67, 551. doi: 10.1351/pac199567040551
doi: 10.1351/pac199567040551
Raval, A.; Pillai, S. A.; Bahadur, A.; Bahadur, P. J. Mol. Liq. 2017, 230, 473. doi: 10.1016/j.molliq.2017.01.065
doi: 10.1016/j.molliq.2017.01.065
Asua, J. M. J. Polym. Sci. 2004, 42, 1025. doi: 10.1002/pola.11096
doi: 10.1002/pola.11096
Nomura, M.; Tobita, H.; Suzuki, K. Emulsion Polymerization: Kinetic and Mechanistic Aspects. Polymer Particles; Springer: Heidelberg, 2005; pp. 1-128.
Torchilin, V. P. Pharm. Res. 2006, 24, 1. doi: 10.1007/s11095-006-9132-0
doi: 10.1007/s11095-006-9132-0
Rangel-Yagui, C. O.; Hsu, H. W. L.; Pessoa-Jr, A.; Tavares, L. C. Rev. Bras. Cienc. Farm. 2005, 41, 237. doi: 10.1590/S1516-93322005000200012
doi: 10.1590/S1516-93322005000200012
Pope, G. A. SPE Prod. Oper. 1980, 20, 191. doi: 10.2118/7660-PA
doi: 10.2118/7660-PA
Gogarty, W. B. SPE Prod. Oper. 1978, 30, 1089. doi: 10.2118/7041-PA
doi: 10.2118/7041-PA
Yuan, S. Y. Fundamental Study on Enhanced Oil Recovery by Chemical Flooding and Microbial Flooding; China petrochemical press, Beijing, 2010; pp. 223-234.
Chase, B.; Chmilowski, W.; Marcinew, R.; Mitchell, C. Oilfield Rev. 1997, 9, 20.
Crews, J. B.; Huang, T.; Wood, W. R. The Future of Fracturing-Fluid Technology and Rates of Hydrocarbon Recovery. In: The Proceedings of SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers: Denver, Colorado, USA, Jan., 2008; p. 13.
Mulligan, C. N.; Yong, R. N.; Gibbs, B. F. Eng. Geol. 2001, 60, 371. doi: 10.1016/S0013-7952(00)00117-4
doi: 10.1016/S0013-7952(00)00117-4
Jiang, Y. F.; Zhan, H. Y.; Yuan, J. M. J. Agro-Environ. Sci. 2006, 25, 119.
doi: 10.3321/j.issn:1672-2043.2006.01.024
Yan, D.; Yu, H.; Huang, G. J.; Wei, J. Chin. J. Environ. Sci. 2015, 35, 229.
doi: 10.13671/j.hjkxxb.2014.0673
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Yongmin Zhang , Shuang Guo , Mingyue Zhu , Menghui Liu , Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026
Zijian Jiang , Yuang Liu , Yijian Zong , Yong Fan , Wanchun Zhu , Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101
Yu Wang , Shoulei Zhang , Tianming Lv , Yan Su , Xianyu Liu , Fuping Tian , Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035
Yadan Luo , Hao Zheng , Xin Li , Fengmin Li , Hua Tang , Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Xinyu ZENG , Guhua TANG , Jianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
Gaofeng Zeng , Shuyu Liu , Manle Jiang , Yu Wang , Ping Xu , Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055
Qin Li , Ziyao Jia , Ye Chen , Mingze Ma , Lin Li , Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035
Hailian Tang , Siyuan Chen , Qiaoyun Liu , Guoyi Bai , Botao Qiao , Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004
Min Gu , Huiwen Xiong , Liling Liu , Jilie Kong , Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Xiutao Xu , Chunfeng Shao , Jinfeng Zhang , Zhongliao Wang , Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
Zeyi Yan , Ruitao Liu , Xinyu Qi , Yuxiang Zhang , Lulu Sun , Xiangyuan Li , Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110
Linhan Tian , Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056