Citation: GONG Lingyan, LIAO Guangzhi, CHEN Quansheng, LUAN Hexin, FENG Yujun. Swollen Surfactant Micelles: Properties and Applications[J]. Acta Physico-Chimica Sinica, ;2019, 35(8): 816-828. doi: 10.3866/PKU.WHXB201810060 shu

Swollen Surfactant Micelles: Properties and Applications

  • Corresponding author: FENG Yujun, yjfeng@scu.edu.cn
  • Received Date: 29 October 2018
    Revised Date: 19 November 2018
    Accepted Date: 26 November 2018
    Available Online: 3 August 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21773161, U1762218)the National Natural Science Foundation of China U1762218the National Natural Science Foundation of China 21773161

  • Micelles, a kind of surfactant aggregate formed in water, may be swollen to a generally limited extent upon addition of a liquid hydrophobic compound. Swollen micelles have attracted considerable research attention because they can enhance the solubility of the said hydrophobic compound. The development of swollen micelles is of significant interest in terms of both scientific and industrial applications, such as drug delivery, oil recovery, and soil remediation. While there have been many studies focusing on micellar solubilization, several questions remain unanswered: the capacity to quantitatively solubilize the drug in drug delivery, the interaction between micelles and non-polar oil when microemulsions are not formed, and the differences and similarities between swollen micelles and microemulsions. Comprehensive understanding of and insight into swollen micelles will be helpful to tailor surfactants for industrial applications. Herein, we reviewed the recent progress in the field of swollen micelles in terms of solubilization capacity, solubilization site, micellar morphology, etc. First, the UV spectrophotometry results demonstrate that the solubilization capacity of micelles is related to their molecular structures and surfactant properties. The solubilization is also dependent on the composition and nature of the hydrophobic compounds, the presence of electrolytes, temperature, etc. Second, the solubilization site may be located in the micellar core, the palisade layer of the micelle, the micelle surface, or the hydrophilic shell of the micelle, depending on the property of the solubilized compounds and the morphology of the micelles. In general, the micellar aggregation number increases with increasing oil concentration; high concentration of oil causes the formation of spherical micelles, while high concentration of oil results in ellipsoidal micelles. Furthermore, the micellar size increased gradually with increasing oil concentrations. Finally, the differences and similarities between swollen micelles and microemulsions were clarified. It is believed that microemulsions can be considered as swollen micelles, but there has been some strong evidence that differentiates swollen micelles and microemulsions. Based on our results, we believe that microemulsions can be considered as swollen micelles, but all micellar solutions cannot be swollen to the extent of microemulsions, unless the specific structural requirements and conditions are satisfied. Overall, understanding the properties of swollen micelles and how they transform to microemulsions not only provide theoretical support for practical applications of surfactants, but can also be used to design new surfactants.
  • 加载中
    1. [1]

      Lindman, B.; Wennerström, H. Micelles; Springer: Heidelberg, 1980; pp. 1-83.

    2. [2]

      Rosen, M. J.; Kunjappu, J. T. Surfactants and Interfacial Phenomena; John Wiley & Sons: New Jersey, 2012; pp. 5-67.

    3. [3]

      Zana, R. Dynamics of Surfactant Self-Assemblies: Micelles, Microemulsions, Vesicles, and Lyotropic Phases; CRC Press: Boca Raton, 2005; pp. 34-87.

    4. [4]

      Christian, S. D.; Scamehorn, J. F. Solubilization in Surfactant Aggregates; CRC Press: Boca Raton, 1995; pp. 334-357.

    5. [5]

      Kralchevsky, P. A.; Denkov, N. D.; Todorov, P. D.; Marinov, G. S.; Broze, G.; Mehreteab, A. Langmuir 2002, 18, 7887. doi: 10.1021/la020366k  doi: 10.1021/la020366k

    6. [6]

      Christov, N. C.; Denkov, N. D.; Kralchevsky, P. A.; Broze, G.; Mehreteab, A. Langmuir 2002, 18, 7880. doi: 10.1021/la020365s  doi: 10.1021/la020365s

    7. [7]

      Kamal, M. S.; Hussein, I. A.; Sultan, A. S. Energy & Fuels 2017, 31, 7701. doi: 10.1021/acs.energyfuels.7b00353  doi: 10.1021/acs.energyfuels.7b00353

    8. [8]

      Gupta, S. P.; Trushenski, S. P. SPE Prod. Oper. 1979, 19, 116. doi: 10.2118/7063-PA  doi: 10.2118/7063-PA

    9. [9]

      Volkering, F.; Breure, A. M.; Rulkens, W. H. Biodegradation 1997, 8, 401. doi: 10.1023/a:1008291130109  doi: 10.1023/a:1008291130109

    10. [10]

      McBain, M. E. L.; Hutchinson, E. Solubilization and Related Phenomena; Academic Press: New York, 1955; pp. 379-380.

    11. [11]

      Merrill, R.C., Jr.; McBain, J. W. J. Phys. Chem.1942, 46, 10. doi: 10.1021/j150415a002  doi: 10.1021/j150415a002

    12. [12]

      Chiou, C. T.; Malcolm, R. L.; Brinton, T. I.; Kile, D. E. Environ. Sci. Technol. 1986, 20, 502. doi: 10.1021/es00147a010  doi: 10.1021/es00147a010

    13. [13]

      Blair, C. M.; Lehmann, S. Process for increasing productivity of subterranean oil-bearing strata. US Patent 2356205, August 22, 1944.

    14. [14]

      Klevens, H. B. J. Chem. Phys. 1949, 17, 1004. doi: 10.1063/1.1747069  doi: 10.1063/1.1747069

    15. [15]

      Gogarty, W. B.; Tosch, W. C. SPE Prod. Oper. 1968, 20, 1407. doi: 10.2118/1847-1-PA  doi: 10.2118/1847-1-PA

    16. [16]

      Carroll, B. J. J. Colloid Interface Sci. 1981, 79, 126. doi: 10.1016/0021-9797(81)90055-2  doi: 10.1016/0021-9797(81)90055-2

    17. [17]

      Edwards, D. A.; Luthy, R. G.; Liu, Z. Environ. Sci. Technol. 1991, 25, 127. doi: 10.1021/es00013a014  doi: 10.1021/es00013a014

    18. [18]

      Cui, Z, G. Surfactant, Colloid and Interface Chemistry; Chemical Industry Press: Beijing, 2013; pp. 21-24.

    19. [19]

      Gong, Y. J.; Xue, Y. Y. J. Northwest Univ. 2000, 30, 28.  doi: 10.16152/j.cnki.xdxbzr.2000.01.012

    20. [20]

      Varela, A. S.; Macho, M. I. S.; González, A. G. Colloid Polym. Sci. 1995, 273, 876. doi: 10.1007/bf00657637  doi: 10.1007/bf00657637

    21. [21]

      Hickok, R. S.; Wedge, S. A.; Hansen, A. L.; Morris, K. F. Magn. Reson. Chem. 2002, 40, 755. doi: 10.1002/mrc.1099  doi: 10.1002/mrc.1099

    22. [22]

      Mourya, V.; Inamdar, N.; Nawale, R.; Kulthe, S. Ind. J. Pharm. Edu. Res. 2011, 45, 128.

    23. [23]

      Zhou, Z.; Chaibundit, C.; D'emanuele, A.; Lennon, K.; Attwood, D.; Booth, C. Int. J. Pharm. 2008, 354, 82. doi: 10.1016/j.ijphann.2007.10.028  doi: 10.1016/j.ijphann.2007.10.028

    24. [24]

      Dong, Y.; Jin, Y.; Wei, D. Polym. Int. 2007, 56, 14. doi: 10.1002/pi.2101  doi: 10.1002/pi.2101

    25. [25]

      Nagarajan, R. Curr. Opin. J. Colloid Interface Sci. 1997, 2, 282. doi: 10.1016/S1359-0294(94)80037-4  doi: 10.1016/S1359-0294(94)80037-4

    26. [26]

      Shen, Z.; Zhao, Z. G.; Wang, G. T. Colloid and Surface Chemistry, 3nd ed.; Chemical Industry Press: Beijing, 2004; pp. 35-40.

    27. [27]

      Rangel-Yagui, C. O.; Pessoa, A., Jr.; Tavares, L. C. J. Pharm. Pharm. Sci. 2005, 8, 147.

    28. [28]

      Harkins, W. D.; Mattoon, R. W.; Corrin, M. L. J. Colloid Sci. 1946, 1, 105. doi: 10.1016/0095-8522(46)90010-4  doi: 10.1016/0095-8522(46)90010-4

    29. [29]

      Suratkar, V.; Mahapatra, S. J. Colloid Interface Sci. 2000, 225, 32. doi: 10.1006/jcis.2000.6718  doi: 10.1006/jcis.2000.6718

    30. [30]

      Totland, C.; Blokhus, A. M. Phys. Chem. Chem. Phys. 2017, 19, 7708. doi: 10.1039/c6cp08506g  doi: 10.1039/c6cp08506g

    31. [31]

      Méndez-Bermúdez, J. G.; Dominguez, H. J. Mol. Model. 2016, 22, 33. doi: 10.1007/s00894-015-2904-x  doi: 10.1007/s00894-015-2904-x

    32. [32]

      Chen, Y. X.; Ma, J. G.; Xu, S. Y. J. Wuxi Univ. Light Ind. 2001, 20, 238.  doi: 10.3321/j.issn:1673.2001.03.004

    33. [33]

      Mukerjee, P.; Cardinal, J. R. J. Phys. Chem. 1978, 82, 1620. doi: 10.1021/j100503a010  doi: 10.1021/j100503a010

    34. [34]

      Zhao, Z. G. Fundamentals of Interface Chemistry; Chemical Industry Press: Beijing, 2004; pp. 12-20.

    35. [35]

      Menger, F. M. Acc. Chem. Res. 1979, 12, 111. doi: 10.1021/ar50136a001  doi: 10.1021/ar50136a001

    36. [36]

      Morishima, K.; Sugawara, S.; Yoshimura, T.; Shibayama, M. Langmuir 2017, 33, 6084. doi: 10.1021/acs.langmuir.7b00902  doi: 10.1021/acs.langmuir.7b00902

    37. [37]

      Zheng, Y.; Lin, Z.; Zakin, J. L.; Talmon, Y.; Davis, H. T.; Scriven, L. E. J. Phys. Chem. B 2000, 104, 5263. doi: 10.1021/jp0002998  doi: 10.1021/jp0002998

    38. [38]

      Rao, J.; McClements, D. J. Food Hydrocolloids 2012, 26, 268. doi: 10.1016/j.foodhyd.2011.06.002  doi: 10.1016/j.foodhyd.2011.06.002

    39. [39]

      Joshi, J. V.; Aswal, V. K.; Goyal, P. S. AIP Conf. Proc. 2008, 989, 259. doi: 10.1063/1.2906080  doi: 10.1063/1.2906080

    40. [40]

      Putra, E. G. R.; Seong, B. S.; Ikram, A. Nucl. Instrum. Methods Phys. Res. 2009, 600, 291. doi: 10.1016/j.nima.2008.11.047  doi: 10.1016/j.nima.2008.11.047

    41. [41]

      Hoffmann, H.; Ulbricht, W. J. Colloid Interface Sci. 1989, 129, 388. doi: 10.1016/0021-9797(89)90453-0  doi: 10.1016/0021-9797(89)90453-0

    42. [42]

      Molchanov, V. S.; Philippova, O. E.; Khokhlov, A. R.; Kovalev, Y. A.; Kuklin, A. I. Langmuir 2007, 23, 105. doi: 10.1021/la061612l  doi: 10.1021/la061612l

    43. [43]

      Shibaev, A. V.; Molchanov, V. S.; Philippova, O. E. J. Phys. Chem. B 2015, 119, 15938. doi: 10.1021/acs.jpcb.5b10505  doi: 10.1021/acs.jpcb.5b10505

    44. [44]

      Shibaev, A. V.; Tamm, M. V.; Molchanov, V. S.; Rogachev, A. V.; Kuklin, A. I.; Dormidontova, E. E.; Philippova, O. E. Langmuir 2014, 30, 3705. doi: 10.1021/la500484e  doi: 10.1021/la500484e

    45. [45]

      Fogang, L. T.; Sultan, A. S.; Kamal, M. S. RSC Adv. 2018, 8, 4455. doi: 10.1039/C7RA12538K  doi: 10.1039/C7RA12538K

    46. [46]

      Sharma, S. C.; Shrestha, R. G.; Shrestha, L. K.; Aramaki, K. J. Phys. Chem. B 2009, 113, 1615. doi: 10.1021/jp808390c  doi: 10.1021/jp808390c

    47. [47]

      Sato, T.; Acharya, D. P.; Kaneko, M.; Aramaki, K.; Singh, Y.; Ishitobi, M.; Kunieda, H. J. Dispersion Sci. Technol. 2006, 27, 611. doi: 10.1080/01932690600660632  doi: 10.1080/01932690600660632

    48. [48]

      Yoshimura, T.; Ichinokawa, T.; Kaji, M.; Esumi, K. Colloids Surf. A 2006, 273, 208. doi: 10.1016/j.colsurfa.2005.08.023  doi: 10.1016/j.colsurfa.2005.08.023

    49. [49]

      Erhardt, R.; Böker, A.; Zettl, H.; Kaya, H. Macromolecules 2001, 34, 1069. doi: 10.1021/ma000670p  doi: 10.1021/ma000670p

    50. [50]

      Riess, G. Block Copolymers. Encyclopedia of Polymer Science and Engineering. Wiley: San Francisco, 1985; pp. 324-434.

    51. [51]

      Ganguly, R.; Kunwar, A.; Kota, S.; Kumar, S.; Aswal, V. K. Colloids Surf. A 2018, 537, 478. doi: 10.1016/j.colsurfa.2017.10.045  doi: 10.1016/j.colsurfa.2017.10.045

    52. [52]

      Ganguly, R.; Kunwar, A.; Dutta, B.; Kumar, S.; Barick, K. C.; Ballal, A. Colloids Surf. B 2017, 152, 176. doi: 10.1016/j.colsurfb.2017.01.023  doi: 10.1016/j.colsurfb.2017.01.023

    53. [53]

      Liu, T.; Wang, H. Y.; Xu, G. Y. Acta Phys. -Chim. Sin. 2016, 32, 1072.  doi: 10.3866/PKU.WHXB201603071
       

    54. [54]

      Shinoda, K.; Friberg, S. Adv. Colloid Interface Sci. 1975, 4, 281. doi: 10.1016/0001-8686(75)85006-8  doi: 10.1016/0001-8686(75)85006-8

    55. [55]

      Chen, P. Molecular Interfacial Phenomena of Polymers and Biopolymers; CRC Press: Boca Raton, 2005; pp. 552-572.

    56. [56]

      Li, G. Z.; Guo, R. Microemulsion and Application; China Petrochemical Press, Beijing, 1995; pp. 12-21.

    57. [57]

      Ravey, J. C.; Buzier, M. J. Colloid Interface Sci. 1987, 116, 30. doi: 10.1016/0021-9797(87)90094-4  doi: 10.1016/0021-9797(87)90094-4

    58. [58]

      Winsor, P. A. Trans. Faraday Soc. 1948, 44, 376. doi: 10.1039/tf9484400376  doi: 10.1039/tf9484400376

    59. [59]

      Adamson, A. W. J. Colloid Interface Sci. 1969, 29, 261. doi: 10.1016/0021-9797(69)90195-7  doi: 10.1016/0021-9797(69)90195-7

    60. [60]

      Stoeckenius, W.; Schulman, J. H.; Prince, L. M. Kolloid-Z. 1960, 169, 170. doi: 10.1007/BF01502567  doi: 10.1007/BF01502567

    61. [61]

      Schulman, J. H.; Riley, D. P. J. Colloid Sci. 1948, 3, 383. doi: 10.1016/0095-8522(48)90024-5  doi: 10.1016/0095-8522(48)90024-5

    62. [62]

      Siano, D. B. J. Colloid Interface Sci. 1983, 93, 1. doi: 10.1016/0021-9797(83)90377-6  doi: 10.1016/0021-9797(83)90377-6

    63. [63]

      Shah, D. O.; Bansal, V. K.; Chan, K.; Hsieh, W. C. Improved Oil Recovery by Surfactant & Polymer Flooding; Elsevier: Netherlands, 1977; pp. 293-324.

    64. [64]

      Schulman, J. H.; Stoeckenius, W.; Prince, L. M. J. Phys. Chem. 1959, 63, 1677. doi: 10.1021/j150580a027  doi: 10.1021/j150580a027

    65. [65]

      Tehrani-Bagha, A.; Holmberg, K. Materials 2013, 6, 580. doi: 10.3390/ma6020580  doi: 10.3390/ma6020580

    66. [66]

      Hu, X. Q.; Zhao, T. H.; Zhang, R. Surfactant Science and Its Application in Oil and Gas Field Development; Chemical Industry Press: Beijing, 2013; pp. 112-135.

    67. [67]

      Kolthoff, I. M.; Stricks, W. J. Phys. Colloid Chem. 1948, 52, 915. doi: 10.1021/j150462a001  doi: 10.1021/j150462a001

    68. [68]

      Binana-Limbelé, W.; Zana, R. J. Colloid Interface Sci. 1988, 121, 81. doi: 10.1016/0021-9797(88)90410-9  doi: 10.1016/0021-9797(88)90410-9

    69. [69]

      Klevens, H. B. J. Am. Chem. Soc. 1950, 72, 3780. doi: 10.1021/ja01164a124  doi: 10.1021/ja01164a124

    70. [70]

      Pramauro, E.; Prevot, A. B. Int. Res. J. Pure Appl. Chem.1995, 67, 551. doi: 10.1351/pac199567040551  doi: 10.1351/pac199567040551

    71. [71]

      Raval, A.; Pillai, S. A.; Bahadur, A.; Bahadur, P. J. Mol. Liq. 2017, 230, 473. doi: 10.1016/j.molliq.2017.01.065  doi: 10.1016/j.molliq.2017.01.065

    72. [72]

      Asua, J. M. J. Polym. Sci. 2004, 42, 1025. doi: 10.1002/pola.11096  doi: 10.1002/pola.11096

    73. [73]

      Nomura, M.; Tobita, H.; Suzuki, K. Emulsion Polymerization: Kinetic and Mechanistic Aspects. Polymer Particles; Springer: Heidelberg, 2005; pp. 1-128.

    74. [74]

      Torchilin, V. P. Pharm. Res. 2006, 24, 1. doi: 10.1007/s11095-006-9132-0  doi: 10.1007/s11095-006-9132-0

    75. [75]

      Rangel-Yagui, C. O.; Hsu, H. W. L.; Pessoa-Jr, A.; Tavares, L. C. Rev. Bras. Cienc. Farm. 2005, 41, 237. doi: 10.1590/S1516-93322005000200012  doi: 10.1590/S1516-93322005000200012

    76. [76]

      Pope, G. A. SPE Prod. Oper. 1980, 20, 191. doi: 10.2118/7660-PA  doi: 10.2118/7660-PA

    77. [77]

      Gogarty, W. B. SPE Prod. Oper. 1978, 30, 1089. doi: 10.2118/7041-PA  doi: 10.2118/7041-PA

    78. [78]

      Yuan, S. Y. Fundamental Study on Enhanced Oil Recovery by Chemical Flooding and Microbial Flooding; China petrochemical press, Beijing, 2010; pp. 223-234.

    79. [79]

      Chase, B.; Chmilowski, W.; Marcinew, R.; Mitchell, C. Oilfield Rev. 1997, 9, 20.

    80. [80]

      Crews, J. B.; Huang, T.; Wood, W. R. The Future of Fracturing-Fluid Technology and Rates of Hydrocarbon Recovery. In: The Proceedings of SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers: Denver, Colorado, USA, Jan., 2008; p. 13.

    81. [81]

      Mulligan, C. N.; Yong, R. N.; Gibbs, B. F. Eng. Geol. 2001, 60, 371. doi: 10.1016/S0013-7952(00)00117-4  doi: 10.1016/S0013-7952(00)00117-4

    82. [82]

      Jiang, Y. F.; Zhan, H. Y.; Yuan, J. M. J. Agro-Environ. Sci. 2006, 25, 119.  doi: 10.3321/j.issn:1672-2043.2006.01.024

    83. [83]

      Yan, D.; Yu, H.; Huang, G. J.; Wei, J. Chin. J. Environ. Sci. 2015, 35, 229.  doi: 10.13671/j.hjkxxb.2014.0673

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    4. [4]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    5. [5]

      Yu Wang Shoulei Zhang Tianming Lv Yan Su Xianyu Liu Fuping Tian Changgong Meng . Introduce a Comprehensive Inorganic Synthesis Experiment: Synthesis of Nano Zinc Oxide via Microemulsion Using Waste Soybean Oil. University Chemistry, 2024, 39(7): 316-321. doi: 10.3866/PKU.DXHX202311035

    6. [6]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    7. [7]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    8. [8]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    9. [9]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    10. [10]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    11. [11]

      Qin Li Ziyao Jia Ye Chen Mingze Ma Lin Li Tao Huang . A Journey into the Enigmatic World of Pickering Emulsion: A Chemical Science Popularization Experiment. University Chemistry, 2024, 39(9): 311-318. doi: 10.3866/PKU.DXHX202306035

    12. [12]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    13. [13]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    14. [14]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    15. [15]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    16. [16]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    17. [17]

      Xiutao Xu Chunfeng Shao Jinfeng Zhang Zhongliao Wang Kai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-. doi: 10.3866/PKU.WHXB202309031

    18. [18]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    19. [19]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    20. [20]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

Metrics
  • PDF Downloads(75)
  • Abstract views(2493)
  • HTML views(730)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return