Citation: GUO Jincheng, LIN Yanfen, TIAN Na, SUN Shigang. Modification of Tetrahexahedral Pd Nanocrystals with Ru and Their Performance for Methanol Electro-oxidation[J]. Acta Physico-Chimica Sinica, ;2019, 35(7): 749-754. doi: 10.3866/PKU.WHXB201810051 shu

Modification of Tetrahexahedral Pd Nanocrystals with Ru and Their Performance for Methanol Electro-oxidation

  • Corresponding author: TIAN Na, tnsd@xmu.edu.cn SUN Shigang, sgsun@xmu.edu.cn
  • Received Date: 23 October 2018
    Revised Date: 12 November 2018
    Accepted Date: 13 November 2018
    Available Online: 15 July 2018

    Fund Project: the Fundamental Research Funds for the Central Universities, China 20720160045The project was supported by the National Natural Science Foundation of China (21573183) and the Fundamental Research Funds for the Central Universities, China (20720160045)the National Natural Science Foundation of China 21573183

  • Direct methanol fuel cell (DMFC) is a potential clean energy facility because of abundant resources, easy storage, and high safety of methanol. However, the low activity, poor durability, and high price of the catalysts hamper the development of DMFC. High-index faceted nanocrystals usually show high catalytic activity for the electro-oxidation of small organic molecules due to high densities of low-coordinated surface sites. Surface modification is an alternative approach for improving catalyst performance via ligand effect or electronic effect. Herein, we prepared tetrahexahedral Pd nanocrystals (THH Pd NCs) enclosed by {730} high-index facets via electrochemical square-wave potential deposition, and modified the THH Pd NCs with Ru using cyclic voltammetry (CV). The coverages of Ru (θRu) were controlled by limiting the CV cycles. The electrocatalytic performance of the Ru-modified THH Pd NCs for methanol oxidation was studied using CV in an alkaline methanol solution. We found that Ru modification can greatly reduce the onset and peak potentials of methanol electro-oxidation from -0.33 to -0.39 V and from -0.16 to -0.26 V, respectively. The current densities at -0.3 V during methanol electro-oxidation increased with increasing θRu from 0 to 0.08, and decreased with increasing θRu from 0.08 to 0.27. When θRu was 0.08, the current density on the Ru-modified THH Pd NCs reached 1.5 mA∙cm-2, which was 10 times higher than that achieved for the THH Pd NCs. To detect the products at molecular level during methanol electro-oxidation, in-situ electrochemical Fourier-transform infrared (FTIR) spectroscopy was applied. The spectra of both THH Pd NCs and Ru-modified THH Pd NCs (θRu = 0.08) showed that both CO2 and formate were produced. The band intensities of CO2 and formate on Ru-modified THH Pd NCs (θRu = 0.08) were 1.6- and 1.2-times larger than those of THH Pd NCs, respectively. However, the band intensity of COad during methanol electro-oxidation was almost equal on the two catalysts, implying that the "CO poison path" is not suppressed by Ru modification. These results indicate that a small amount of Ru (θRu = 0.08) modification is beneficial for the electrocatalytic oxidation of methanol by enhancing the "formate path" at low potential. Overall, this study illustrates the influence of Ru modification of THH Pd NCs on its catalytic performance in methanol electro-oxidation, which throws light on the synthesis and application of catalysts with high activities.
  • 加载中
    1. [1]

      Qian, H. H.; Han, X.; Zhao, Y.; Su, Y. Q. Acta Phys. -Chim. Sin. 2017, 33, 1822.  doi: 10.3866/PKU.WHXB201705022

    2. [2]

      Bianchini, C.; Shen, P. K. Chem. Rev. 2009, 109, 4183. doi: 10.1021/cr9000995  doi: 10.1021/cr9000995

    3. [3]

      Zhang, L.; Chang, Q.; Chen, H.; Shao, M. Nano Energy 2016, 29, 198. doi: 10.1016/j.nanoen.2016.02.044  doi: 10.1016/j.nanoen.2016.02.044

    4. [4]

      Cao, D.; Lu, G. Q.; Wieckowski, A.; Wasileski, S. A.; Neurock, M. J. Phys. Chem. B 2005, 109, 11622. doi: 10.1021/jp0501188  doi: 10.1021/jp0501188

    5. [5]

      Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Science 2007, 316, 732. doi: 10.1126/science.1140484  doi: 10.1126/science.1140484

    6. [6]

      Tian, N.; Zhou, Z. Y.; Yu, N. F.; Wang, L. Y.; Sun, S. G. J. Am. Chem. Soc. 2010, 132, 7580. doi: 10.1021/ja102177r  doi: 10.1021/ja102177r

    7. [7]

      Housmans, T. H. M.; Koper, M. T. M. J. Phys. Chem. B 2003, 107, 8557. doi: 10.1021/jp034291k  doi: 10.1021/jp034291k

    8. [8]

      Wang, C.; Chen, D. P.; Sang, X.; Unocic, R. R.; Skrabalak, S. E. ACS Nano 2016, 10, 6345. doi: 10.1021/acsnano.6b02669  doi: 10.1021/acsnano.6b02669

    9. [9]

      Jana, R.; Subbarao, U.; Peter, S. C. J. Power Sources 2016, 301, 160. doi: 10.1016/j.jpowsour.2015.09.114  doi: 10.1016/j.jpowsour.2015.09.114

    10. [10]

      Li, S.; Lai, J.; Luque, R.; Xu, G. Energy Environ. Sci. 2016, 9, 3097. doi: 10.1039/C6EE02229D  doi: 10.1039/C6EE02229D

    11. [11]

      Sulaiman, J. E.; Zhu, S.; Xing, Z.; Chang, Q.; Shao, M. ACS Catal. 2017, 7, 5134. doi: 10.1021/acscatal.7b01435  doi: 10.1021/acscatal.7b01435

    12. [12]

      Lee, Y. W.; Kim, M.; Kim, Y.; Kang, S. W.; Lee, J. H.; Han, S. W. J. Phys. Chem. C 2010, 114, 7689. doi: 10.1021/jp9119588  doi: 10.1021/jp9119588

    13. [13]

      Wang, X.; Choi, S. I.; Roling, L. T.; Luo, M.; Ma, C.; Zhang, L.; Chi, M.; Liu, J.; Xie, Z.; Herron, J. A.; et al. Nat. Commun. 2015, 6, 7594. doi: 10.1038/ncomms8594  doi: 10.1038/ncomms8594

    14. [14]

      Wang, X.; Tang, Y.; Gao, Y.; Lu, T. J. Power Sources 2008, 175, 784. doi: 10.1016/j.jpowsour.2007.10.011  doi: 10.1016/j.jpowsour.2007.10.011

    15. [15]

      Liu, Z.; Zhang, X.; Tay, S. W. J. Solid State Electrochem. 2012, 16, 545. doi: 10.1007/s10008-011-1378-8  doi: 10.1007/s10008-011-1378-8

    16. [16]

      Hu, S.; Scudiero, L.; Ha, S. ECS Trans. 2014, 64, 1121. doi: 10.1149/06403.1121ecst  doi: 10.1149/06403.1121ecst

    17. [17]

      Zhang, K.; Bin, D.; Yang, B.; Wang, C.; Ren, F.; Du, Y. Nanoscale 2015, 7, 12445. doi: 10.1039/C5NR02713F  doi: 10.1039/C5NR02713F

    18. [18]

      Chen, Q. S.; Zhou, Z. Y.; Vidal-Iglesias, F. J.; Solla-Gullon, J.; Feliu, J. M.; Sun, S. G. J. Am. Chem. Soc. 2011, 133, 12930. doi: 10.1021/ja2042029  doi: 10.1021/ja2042029

    19. [19]

      Liu, H. X.; Tian, N.; Brandon, M. P.; Zhou, Z. Y.; Lin, J. L.; Hardacre, C.; Lin, W. F.; Sun, S. G. ACS Catal. 2012, 2, 708. doi: 10.1021/cs200686a  doi: 10.1021/cs200686a

    20. [20]

      Zhou, Z. Y.; Lin, J. L.; Shang, S. J.; Ren, J.; Sun, S. G. Acta Phys. -Chim. Sin. 2012, 28, 1745.  doi: 10.3866/PKU.WHXB201205082

    21. [21]

      Ye, J. Y.; Jiang, Y. X.; Sheng, T.; Sun, S. G. Nano Energy 2016, 29, 414. doi: 10.1016/j.nanoen.2016.06.023  doi: 10.1016/j.nanoen.2016.06.023

    22. [22]

      Samjeské, G.; Xiao, X. Y.; Baltruschat, H. Langmuir 2002, 18, 4659. doi: 10.1021/la011308m  doi: 10.1021/la011308m

    23. [23]

      Chen, A.; Ostrom, C. Chem. Rev. 2015, 115, 11999. doi: 10.1021/acs.chemrev.5b00324  doi: 10.1021/acs.chemrev.5b00324

    24. [24]

      Yang, Y. Y.; Ren, J.; Zhang, H. X.; Zhou, Z. Y.; Sun, S. G.; Cai, W. B. Langmuir 2013, 29, 1709. doi: 10.1021/la305141q  doi: 10.1021/la305141q

  • 加载中
    1. [1]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    2. [2]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    3. [3]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    4. [4]

      Yongmei Liu Lisen Sun Zhen Huang Tao Tu . Curriculum-Based Ideological and Political Design for the Experiment of Methanol Oxidation to Formaldehyde Catalyzed by Electrolytic Silver. University Chemistry, 2024, 39(2): 67-71. doi: 10.3866/PKU.DXHX202308020

    5. [5]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    6. [6]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    7. [7]

      Yangrui Xu Yewei Ren Xinlin Liu Hongping Li Ziyang Lu . 具有高传质和亲和表面的NH2-UIO-66基疏水多孔液体用于增强CO2光还原. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-. doi: 10.3866/PKU.WHXB202403032

    8. [8]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    9. [9]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    10. [10]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    11. [11]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    12. [12]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    13. [13]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

    14. [14]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    15. [15]

      Zhongbin Pan Shijie Huang Yunjie Luo Hongzhen Xie . Design of a Comprehensive Experiment for Determining Permanganate Index (CODMn) in Drinking Water. University Chemistry, 2024, 39(7): 354-360. doi: 10.12461/PKU.DXHX202311040

    16. [16]

      Zihan Lin Wanzhen Lin Fa-Jie Chen . Electrochemical Modifications of Native Peptides. University Chemistry, 2025, 40(3): 318-327. doi: 10.12461/PKU.DXHX202406089

    17. [17]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    18. [18]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    20. [20]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . Efficient capacitive desalination over NCQDs decorated FeOOH composite. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

Metrics
  • PDF Downloads(14)
  • Abstract views(777)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return