Citation: XIE Wen, HE Huan, DONG Jiaxin, GUO Qinglian, LIU Yi. Thermodynamics of the Interaction of Morin with Bovine Serum Albumin[J]. Acta Physico-Chimica Sinica, ;2019, 35(7): 725-733. doi: 10.3866/PKU.WHXB201810019 shu

Thermodynamics of the Interaction of Morin with Bovine Serum Albumin

  • Corresponding author: GUO Qinglian, 2521351499@qq.com
  • Received Date: 8 October 2018
    Revised Date: 23 October 2018
    Accepted Date: 23 October 2018
    Available Online: 26 July 2018

    Fund Project: The project was supported by the Key Projects of the Health Planning Committee of Hubei Province, China (WJ2015MB097)the Key Projects of the Health Planning Committee of Hubei Province, China WJ2015MB097

  • Morin is a natural flavonoid compound extracted from the bark of mulberry, orange, and other fruit trees. Serum albumin (SA) is the most abundant carrier protein in animal plasma, as well as the most common soluble protein in the circulatory system. The study of the binding behavior of Morin and the characteristics of the binding of Morin to SA would help in further elucidating its transport process and mechanism of action in vivo at the molecular level. Herein, the thermodynamics of the interaction between bovine serum albumin (BSA) and Morin was investigated by fluorescence, UV-Vis absorbance, CD, and molecular modeling under physiological conditions. The quenching constants (KSV) decreased as the temperature increased, indicating that the fluorescence quenching of BSA by Morin was a static process. The static quenching mechanism was further supported by the measurement of the UV-vis spectra of the BSA-Morin system. Based on the van't Hoff equation, the ΔHƟ, ΔSƟ, and ΔGƟ were calculated to be around −81.20 kJ·mol−1, −181.01 J·mol−1·K−1, and −27.19 kJ·mol−1, respectively. The negative ΔGƟ value indicated that the interaction between Morin and BSA was a spontaneous process. The hydrogen bonds and van der Waals force played a predominant role in the binding process. Our data indicate that Morin binds solely with the BSA molecule. The apparent binding constant of the Morin-BSA system reached the order of 104, which further confirmed the strong binding between Morin and BSA. This indicates that serum albumin can store and transport Morin molecules in the body, enabling them to reach the action site through blood circulation; thus, they can exert their physiological and biochemical effects. By using the fluorescence resonance energy transfer theory and the molecular simulation method, we found that Morin bound at Site Ⅱ in the hydrophobic cavity of the substructure domain IIIA of BSA, and the average distance between the two tryptophan residues and Morin was 3.09 nm. The synchronous fluorescence spectrum also revealed that Morin was far away from the two tryptophans of BSA, and therefore, cannot change the spatial structure near tryptophan. The CD spectra demonstrated that the α-helix content of BSA decreased from 59.5% to 53.9% after its interaction with Morin, while the disordered structure increased from 20.6% to 23.7%. The best-fitted docking poses reveal that Morin mainly contacted with the side-chains of surrounding hydrophobic amino acid residues. In addition, the generation of hydrogen bonds between hydroxyl groups on Morin molecules and the side-chains of R413 and K437 can be observed. These results provide basic knowledge for understanding the pharmacology of Morin, and useful guidance for designing, modifying, and screening flavonoid drug molecules.
  • 加载中
    1. [1]

      Yan, R.; Lai, L.; Xu, Z. Q.; Jiang, F. L.; Liu, Y. Acta. Phys. -Chim. Sin. 2017, 33(12), 2377.  doi: 10.3866/PKU.WHXB201706096
       

    2. [2]

      Tang, Q.; Su, J. Y.; Cao, H. Y.; Wang, L. H.; Shi, F.; Wang, A. L.; Gong, T. T.; Jin, X. J.; Zheng, X. F. Chem. J. Chin. Univ. 2017, 38(11), 1982.  doi: 10.7503/cjcu20170063

    3. [3]

      Sun, Q. M.; Yang, H. Q.; Tang, P. X.; Liu, J. Y.; Wang, W.; Li, H. Food Chem. 2018, 243, 74. doi: 10.1016/j.foodchem.2017.09.109  doi: 10.1016/j.foodchem.2017.09.109

    4. [4]

      Huang, S.; Xie, J.; Cui, J.; Liu, L.; Liang, Y.; Liu, Y.; Xiao, Q. Steroids 2017, 128, 136. doi: 10.1016/j.steroids.2017.09.011  doi: 10.1016/j.steroids.2017.09.011

    5. [5]

      Markovic, O. S.; Olivera, S.; Cvijetic, I. N.; Zlatovic, M. V.; Opsenica, I. M.; Konstantinovic, J. M.; Terzic, J.; Natasa, V.; Solaja, B. A.; Verbic, T. Z. Spectroc. Acta Pt. A-Mol. Biomol. Spectr. 2017, 192, 128. doi: 10.1016/j.saa.2017.10.061  doi: 10.1016/j.saa.2017.10.061

    6. [6]

      Dehkhodaei, M.; Sahihi, M.; Amiri, R. H.; Momenbeik, F. J. Biol. Inorg. Chem. 2018, 23(2), 181. doi: 10.1007/s00775-017-1505-9  doi: 10.1007/s00775-017-1505-9

    7. [7]

      Peng, Y. L.; Wang, S. J.; Fu, L.; Zhang, C. G.; Liu, X. G. Acta Phys. -Chim. Sin. 2012, 28(5), 1054.  doi: 10.3866/PKU.WHXB201202222
       

    8. [8]

      Wang, H.; Wang, J.; Pu, X.; Li, Z. X. Fine Chem. 2017, 12, 1412.

    9. [9]

      Bingwa, N.; Bewana, S.; Haumann, M.; Meijiboom, R. Appl. Surf. Sci. 2017, 426, 497. doi: 10.1016/j.apsusc.2017.07.184  doi: 10.1016/j.apsusc.2017.07.184

    10. [10]

      Abreu, A. C.; Saavedra, M. J.; Simoes, L. C.; Simoes, M. Biofouling 2016, 32, 1103. doi: 10.1080/08927014.2016.1232402  doi: 10.1080/08927014.2016.1232402

    11. [11]

      Zhou, X. F.; Zheng, R. L. J. Lanzhou Univ. 1991, 3, 101.  doi: 10.3321/j.issn:0455-2059.1991.03.017

    12. [12]

      Woznicka, E.; Kopacz, M.; Umbreit, M.; Klos, J. J. Inorg. Biochem. 2007, 101, 774. doi: 10.1016/j.jinorgbio.2007.01.005  doi: 10.1016/j.jinorgbio.2007.01.005

    13. [13]

      Roy, A. S.; Samanta, S. K.; Ghosh, P.; Tripathy, D. R.; Ghosh, S. K.; Dasgupta, S. Mol. Biosys. 2016, 12, 2818. doi: 10.1039/C6MB00344C  doi: 10.1039/C6MB00344C

    14. [14]

      Daniele, S.; Valeria, U.; Luisa, P.; Maria, S.; Giovanni, M.; Eugenio, G. J. Inorg. Biochem. 2015, 153, 167. doi: 10.1016/j.jinorgbio.2015.07.018  doi: 10.1016/j.jinorgbio.2015.07.018

    15. [15]

      Liu, E.; Zhang, H. X. J. Sol. Chem. 2014, 43, 1402. doi: 10.1007/s10953-014-0210-3  doi: 10.1007/s10953-014-0210-3

    16. [16]

      Qi, Z. D.; Zhang, Y.; Liao, F. L.; Ouyang, Y. W.; Liu, Y.; Yang, X. J. Pharm. Biomed. Anal. 2008, 46, 699. doi: 10.1016/j.jpba.2007.10.016  doi: 10.1016/j.jpba.2007.10.016

    17. [17]

      Wang, F.; Huang, W.; Miao, X. W.; Tang, B. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2012, 99, 373. doi: 10.1016/j.saa.2012.08.085  doi: 10.1016/j.saa.2012.08.085

    18. [18]

      Song, Y. M.; Kang, J. W.; Lu, X. Q.; Wang, Z. H.; Gao, J. Z. Chem. J. Chin. Univ. 2003, 24, 249.  doi: 10.3321/j.issn:0251-0790.2003.02.040

    19. [19]

      Petitpas, I.; Bhattacharya, A. A.; Twine, S.; East, M.; Curry, S. J. Biol. Chem. 2001, 276, 22804. doi:10.1074/jbc.M100575200  doi: 10.1074/jbc.M100575200

    20. [20]

      Xu, L.; Hu, Y. X.; Li, Y. C.; Zhang, L.; Ai, H. X.; Liu, H. S.; Liu, Y. F.; Sang, Y. L.J. Mol. Struct. 2017, 1149, 645. doi: 10.1016/j.molstruc.2017.08.039  doi: 10.1016/j.molstruc.2017.08.039

    21. [21]

      Mondal, M.; Lakshmi, P.; Krishna, R.; Sakthivel, N. J. Luminesc. 2017, 192, 990. doi: 10.1016/j.jlumin.2017.08.007  doi: 10.1016/j.jlumin.2017.08.007

    22. [22]

      Dangkoob, F.; Housaindokht, M. R.; Asoodeh, A.; Rajabi, O.; Zaeri, Z. R.; Doghaei, A. V. Spectroc. Acta Pt. A-Molec. Biomol. Spectr. 2015, 137, 1106. doi: 10.1016/j.saa.2014.08.149  doi: 10.1016/j.saa.2014.08.149

    23. [23]

      Li, D. W.; He, H.; Lin, B. B.; Xu, Z. Q.; Jiang, F. L.; Liu, Y. RSC Adv. 2014, 4, 3913. doi: 10.1039/C3RA46172F  doi: 10.1039/C3RA46172F

    24. [24]

      Chen, Z. F.; Zhang, S. P.; Zhun, Z. Z.; Zhang, Y. M. New J. Chem. 2017, 41, 6340. doi: 10.1039/C7NJ01223C  doi: 10.1039/C7NJ01223C

    25. [25]

      Paul, B. K.; Ghosh, N.; Mukherjee, S. J. Phys. Chem. B 2015, 119, 13093. doi: 10.1021/acs.jpcb.5b08147  doi: 10.1021/acs.jpcb.5b08147

    26. [26]

      Han, X. L.; Tian, F. F.; Ge, Y. S.; Jiang, F. L.; Lai, L.; Li, D. W.; Yu, Q. L. Y.; Wang, J.; Lin, C.; Liu, Y. J. Photochem. Photobiol. B-Biol. 2012, 109, 1. doi: 10.1016/j.jphotobiol.2011.12.010  doi: 10.1016/j.jphotobiol.2011.12.010

    27. [27]

      Hu, Y. J.; Yue, H. L.; Li, X. L.; Zhang, S. S.; Tang, E.; Zhang, L. P. J. Photochem. Photobiol. B-Biol. 2012, 112, 16. doi: 10.1016/j.jphotobiol.2012.04.001  doi: 10.1016/j.jphotobiol.2012.04.001

    28. [28]

      Nishijima, M.; Pace, T. C. S.; Bohne, C.; Mori, T.; Inoue, Y.; Wada, T. J. Photochem. Photobiol. B-Biol. 2016, 331, 89. doi: 10.1016/j.jphotochem.2015.12.019  doi: 10.1016/j.jphotochem.2015.12.019

    29. [29]

      Banerjee, M.; Chakrabarti, A.; Basu, S. Dyes Pigment.2013, 97, 446. doi: 10.1016/j.dyepig.2013.01.005  doi: 10.1016/j.dyepig.2013.01.005

    30. [30]

      Huang, S.; Peng, S. S.; Zhu, F. W.; Lei, X. L.; Xiao, Q.; Su, W.; Liu, Y.; Huang, C. S.; Zhang, L. X. Biol. Trace Elem. Res.2016, 169, 189. doi: 10.1007/s12011-015-0416-2  doi: 10.1007/s12011-015-0416-2

    31. [31]

      Bose, A. J. Luminesc. 2016, 169, 220. doi: 10.1016/j.jlumin.2015.09.018  doi: 10.1016/j.jlumin.2015.09.018

    32. [32]

      Wang, Q.; He, J. W.; Wu, D.; Wang, J.; Yan, J.; Li, H. J. Luminesc. 2015, 164, 81. doi: 10.1016/j.jlumin.2015.03.025  doi: 10.1016/j.jlumin.2015.03.025

    33. [33]

      Wu, X.; Liu, J.; Huang, H.; Xue, W.; Yao, X.; Jin, J. Int. J. Biol. Macromol. 2011, 49(3), 343. doi: 10.1016/j.ijbiomac.2011.05.010  doi: 10.1016/j.ijbiomac.2011.05.010

    34. [34]

      Ross, P. D.; Subramanian, S. Biochemistry1981, 20(11), 3096.  doi: 10.1021/bi00514a017

    35. [35]

      Zhang, S. L.; Yao, H. K.; Wang, C. Y.; Tam, K. Y. Bioorgan. Med. Chem. Lett. 2014, 24, 4963. doi: 10.1016/j.bmcl.2014.09.034  doi: 10.1016/j.bmcl.2014.09.034

    36. [36]

      Barik, A.; Mishra, B.; Kunwar, A.; Priyadarsini, K. I. Chem. Phys. Lett. 2007, 436, 239. doi: 10.1016/j.cplett.2007.01.006  doi: 10.1016/j.cplett.2007.01.006

    37. [37]

      Hu, Y. J.; Liu, Y.; Pi, Z. B.; Qu, S. S. Bioorgan. Med. Chem. 2005, 13, 6609. doi: 10.1016/j.bmc.2005.07.039  doi: 10.1016/j.bmc.2005.07.039

    38. [38]

      Chen, T. T.; Zhu, X. T.; Chen, Q.; Ge, M.; Jia, X. P.; Wang, X.; Ge, C. W. Food Chem. 2015, 186, 292. doi: 10.1016/j.foodchem.2014.11.041  doi: 10.1016/j.foodchem.2014.11.041

    39. [39]

      Punith, R.; Seetharamappa, J. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2012, 92, 37. doi: 10.1016/j.saa.2012.02.038  doi: 10.1016/j.saa.2012.02.038

    40. [40]

      Li, Z. G.; Wang, J. Q.; Ren, T.; Zhang, L. J.; Shi, J.; Song, C. J.; Wang, R. Y.; Chang, J. B. Med. Chem. Res. 2016, 25, 1009. doi: 10.1007/s00044-016-1547-5  doi: 10.1007/s00044-016-1547-5

    41. [41]

      Tian, F. F.; Jiang, F. L.; Han, X. L.; Xiang, C.; Ge, Y. S.; Li, J. H.; Zhang, Y.; Li, R.; Ding, X. L.; Liu, Y. J. Phys. Chem. B2010, 114, 14842. doi: 10.1021/jp105766n  doi: 10.1021/jp105766n

    42. [42]

      Claire, D.; Olivier, D. BBA Gen. Sub. 2005, 1721, 164. doi: 10.1016/j.bbagen.2004.10.013  doi: 10.1016/j.bbagen.2004.10.013

    43. [43]

      Lan, R.; Gong, X. B.; Huang, L. G.; Chen, Z.; Zeng, X.; Zhang, B. S. China Pharmacy 2016, 27, 3054.  doi: 10.6039/j.issn.1001-0408.2016.22.10

    44. [44]

      Le, W.; Sun, X. M.; Li, B. H. Chem. World 2008, 7, 401.  doi: 10.3969/j.issn.0367-6358.2008.07.006

  • 加载中
    1. [1]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    2. [2]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    3. [3]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    6. [6]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    7. [7]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    8. [8]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    9. [9]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    10. [10]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    11. [11]

      Chunyang Zheng Shiyu Liu Nuo Yi Hong Shang . The Adventures in the Kingdom of Plant Pigments. University Chemistry, 2024, 39(9): 170-176. doi: 10.3866/PKU.DXHX202308085

    12. [12]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    13. [13]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    14. [14]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    15. [15]

      Linhan Tian Changsheng Lu . Discussion on Sextuple Bonding in Diatomic Motifs of Chromium Family Elements. University Chemistry, 2024, 39(8): 395-402. doi: 10.3866/PKU.DXHX202401056

    16. [16]

      Yanan Jiang Yuchen Ma . Brief Discussion on the Electronic Exchange Interaction in Quantum Chemistry Computations. University Chemistry, 2025, 40(3): 10-15. doi: 10.12461/PKU.DXHX202402058

    17. [17]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    18. [18]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    19. [19]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    20. [20]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

Metrics
  • PDF Downloads(12)
  • Abstract views(904)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return