Electrochemical Performance of Activated Graphene Powder Supercapacitors Using a Room Temperature Ionic Liquid Electrolyte
- Corresponding author: YANG Huachao, huachao@zju.edu.cn
Citation:
YANG Kang, SHUAI Xiaorui, YANG Huachao, YAN Jianhua, CEN Kefa. Electrochemical Performance of Activated Graphene Powder Supercapacitors Using a Room Temperature Ionic Liquid Electrolyte[J]. Acta Physico-Chimica Sinica,
;2019, 35(7): 755-765.
doi:
10.3866/PKU.WHXB201810009
Chen, X.; Paul, R.; Dai, L. Nat. Sci. Rev. 2017, 4, 453. doi: 10.1093/nsr/nwx009
doi: 10.1093/nsr/nwx009
Li, X. Q.; Chang, L.; Zhao, S. L.; Hao, C. L.; Lu, C. G.; Zhu, Y. H.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2017, 33, 130.
doi: 10.3866/PKU.WHXB201609012
Yang, H.; Yang, J.; Bo, Z.; Zhang, S.; Yan, J.; Cen, K. J. Power Sources 2016, 324, 309. doi: 10.1016/j.jpowsour.2016.05.072
doi: 10.1016/j.jpowsour.2016.05.072
Shen, X. Y.; He, J. J.; Wang, N.; Huang, C. S. Acta Phys. -Chim. Sin. 2018, 34, 1029.
doi: 10.3866/PKU.WHXB201801122
González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Renew. Sustain. Energy Rev. 2016, 58, 1189. doi: 10.1016/j.rser.2015.12.249
doi: 10.1016/j.rser.2015.12.249
Yang, H. C.; Bo, Z.; Shuai, X. R.; Yan, J. H.; Cen, K. F. Acta Phys. -Chim. Sin. 2019, 35, 200.
doi: 10.3866/PKU.WHXB201803083
Kanchev, H.; Lu, D.; Colas, F.; Lazarov, V.; Francois, B. IEEE T. Ind. Electron. 2011, 58, 4583. doi: 10.1109/TIE.2011.2119451
doi: 10.1109/TIE.2011.2119451
Wu, Z.; Zhang, X. B. Acta Phys. -Chim. Sin. 2017, 33, 305.
doi: 10.3866/PKU.WHXB201611012
Yang, H.; Zhang, X.; Yang, J.; Bo, Z.; Hu, M.; Yan, J.; Cen, K. J. Phys. Chem. Lett. 2017, 8, 153. doi: 10.1021/acs.jpclett.6b02659
doi: 10.1021/acs.jpclett.6b02659
Simon, P.; Gogotsi, Y. Acc. Chem. Res. 2013, 46, 1094. doi: 10.1021/ar200306b
doi: 10.1021/ar200306b
Jiang, J.; Liu, B.; Liu, G.; Qian, D.; Yang, C.; Li, J. Electrochim. Acta 2018, 274, 121. doi: 10.1016/j.electacta.2018.04.097
doi: 10.1016/j.electacta.2018.04.097
Qiu, Z.; Wang, Y.; Bi, X.; Zhou, T.; Zhou, J.; Zhao, J.; Miao, Z.; Yi, W.; Fu, P.; Zhuo, S. J. Power Sources 2018, 376, 82. doi: 10.1016/j.jpowsour.2017.11.077
doi: 10.1016/j.jpowsour.2017.11.077
Yang, J.; Wu, H.; Zhu, M.; Ren, W.; Lin, Y.; Chen, H.; Pan, F. Nano Energy 2017, 33, 453. doi: 10.1016/j.nanoen.2017.02.007
doi: 10.1016/j.nanoen.2017.02.007
Quan, H.; Fan, X.; Wang, W.; Gao, W.; Dong, Y.; Chen, D. Appl. Surf. Sci. 2018, 460, 8. doi: 10.1016/j.apsusc.2018.01.202
doi: 10.1016/j.apsusc.2018.01.202
Moyo, B.; Momodu, D.; Fasakin, O.; Bello, A.; Dangbegnon, J.; Manyala, N. J. Mater. Sci. 2018, 53, 5229. doi: 10.1007/s10853-017-1911-y
doi: 10.1007/s10853-017-1911-y
Fedorov, M. V.; Kornyshev, A. A. Chem. Rev. 2014, 114, 2978. doi: 10.1021/cr400374x
doi: 10.1021/cr400374x
MacFarlane, D. R.; Tachikawa, N.; Forsyth, M.; Pringle, J. M.; Howlett, P. C.; Elliott, G. D.; Davis, J. H.; Watanabe, M.; Simon, P.; Angell, C. A. Energy Environ. Sci. 2014, 7, 232. doi: 10.1039/c3ee42099j
doi: 10.1039/c3ee42099j
Gong, Y.; Li, D.; Luo, C.; Fu, Q.; Pan, C. Green Chem. 2017, 19, 4132. doi: 10.1039/c7gc01681f
doi: 10.1039/c7gc01681f
Tian, J.; Cui, C.; Zheng, C.; Qian, W. Chin. Chem. Lett. 2018, 29, 599. doi: 10.1016/j.cclet.2018.01.027
doi: 10.1016/j.cclet.2018.01.027
Branco, L. C.; Rosa, J. N.; Ramos, J. J. M.; Afonso, C. A. M. Chem. -Eur. J. 2002, 8, 3671. doi: 10.1002/1521-3765(20020816)8:16 <3671::AID-CHEM3671>3.0.CO;2-9
doi: 10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9
Elaiwi, A.; Hitchcock, P. B.; Seddon, K. R.; Srinivasan, N.; Tan, Y. M.; Welton, T.; Zora, J. A. J. Chem. Soc., Dalton Trans. 1995, 21, 3467. doi: 10.1039/DT9950003467
doi: 10.1039/DT9950003467
Vraneš, M.; Papović, S.; Tot, A.; Zec, N.; Gadžurić, S. J. Chem. Thermodyn. 2014, 76, 161. doi: 10.1016/j.jct.2014.03.025
doi: 10.1016/j.jct.2014.03.025
Stoppa, A.; Hunger, J.; Buchner, R. J. Chem. Eng. Data 2009, 54, 472. doi: 10.1021/je800468h
doi: 10.1021/je800468h
Li, W.; Zhang, Z.; Han, B.; Hu, S.; Xie, Y.; Yang, G. J. Phys. Chem. B 2007, 111, 6452. doi: 10.1021/jp071051m
doi: 10.1021/jp071051m
Feng, G.; Huang, J.; Sumpter, B. G.; Meunier, V.; Qiao, R. Phys. Chem. Chem. Phys. 2011, 13, 14723. doi: 10.1039/c1cp21428d
doi: 10.1039/c1cp21428d
Hantel, M. M.; Płatek, A.; Kaspar, T.; Nesper, R.; Wokaun, A.; Kötz, R. Electrochim. Acta 2013, 110, 234. doi: 10.1016/j.electacta.2013.04.032
doi: 10.1016/j.electacta.2013.04.032
Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017
doi: 10.1021/ja01539a017
Bo, Z.; Zhu, W.; Ma, W.; Wen, Z.; Shuai, X.; Chen, J.; Yan, J.; Wang, Z.; Cen, K.; Feng, X. Adv. Mater. 2013, 25, 5799. doi: 10.1002/adma.201301794
doi: 10.1002/adma.201301794
Wang, X.; Zhi, L.; Müllen, K. Nano Lett. 2008, 8, 323. doi: 10.1021/nl072838r
doi: 10.1021/nl072838r
Zhu, Y.; Murali, S.; Stoller, M. P.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Science 2011, 332, 1537. doi: 10.1126/science.1200770
doi: 10.1126/science.1200770
Kim, T.; Jung, G.; Yoo, S.; Suh, K. S.; Ruoff, R. S. ACS Nano 2013, 7, 6899. doi: 10.1021/nn402077v
doi: 10.1021/nn402077v
Qi, H.; Bo, Z.; Yang, S.; Duan, L.; Yang, H.; Yan, J.; Cen, K.; Ostrikov, K. Energy Storage Mater. 2018, doi: 10.1016/j.ensm.2018.07.019
doi: 10.1016/j.ensm.2018.07.019
Ye, J.; Tan, H.; Wu, S.; Ni, K.; Pan, F.; Liu, J.; Tao, Z.; Qu, Y.; Ji, H.; Simon, P.; et al. Adv. Mater. 2018, 30, 1801384. doi: 10.1002/adma.201801384
doi: 10.1002/adma.201801384
Xu, J.; Tan, Z.; Zeng, W.; Chen, G.; Wu, S.; Zhao, Y.; Ni, K.; Tao, Z.; Ikram, M.; Ji, H.; et al. Adv. Mater. 2016, 28, 5222. doi: 10.1002/adma.201600586
doi: 10.1002/adma.201600586
Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745.
doi: 10.3866/PKU.WHXB20120822
Bo, Z.; Shuai, X.; Mao, S.; Yang, H.; Qain, J.; Chen, J.; Yan, J.; Cen, K. Sci. Rep. 2014, 4, 4684. doi: 10.1038/srep04684
doi: 10.1038/srep04684
Du, W. S.; Lu, Y. K.; Cai, Z. W.; Zhang, C. Acta Phys. -Chim. Sin. 2017, 33, 1828.
doi: 10.3866/PKU.WHXB201705089
Wang, Y. F.; Zuo, S. L. Acta Phys. -Chim. Sin. 2016, 32, 481.
doi: 10.3866/PKU.WHXB201511041
Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y. Energy Environ. Sci. 2011, 4, 2826. doi: 10.1039/c1ee01198g
doi: 10.1039/c1ee01198g
Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. D.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034
doi: 10.1016/j.carbon.2007.02.034
Burt, R.; Breitsprecher, K.; Daffos, B.; Taberna, P. L.; Simon, P.; Birkett, G.; Zhao, X. S.; Holm, C.; Salanne, M. J. Phys. Chem. Lett. 2016, 7, 4015. doi: 10.1021/acs.jpclett.6b01787
doi: 10.1021/acs.jpclett.6b01787
Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y. J. Electrochem. Soc. 2009, 156, A435. doi: 10.1149/1.3106112
doi: 10.1149/1.3106112
Taberna, P. L.; Simon, P.; Fauvarque, J. F. J. Electrochem. Soc. 2003, 150, A292. doi: 10.1149/1.1543948
doi: 10.1149/1.1543948
Cai, Y.; Luo, Y.; Dong, H.; Zhao, X.; Xiao, Y.; Liang, Y.; Hu, H.; Liu, Y.; Zheng, M. J. Power Sources 2017, 353, 260. doi: 10.1016/j.jpowsour.2017.04.021
doi: 10.1016/j.jpowsour.2017.04.021
Zhou, Y.; Ren, J.; Xia, L.; Zheng, Q.; Liao, J.; Long, E.; Xie, F.; Xu, C.; Lin, D. Electrochim. Acta 2018, 284, 336. doi: 10.1016/j.electacta.2018.07.134
doi: 10.1016/j.electacta.2018.07.134
Guo, H.; Ding, B.; Wang, J.; Zhang, Y.; Hao, X.; Wu, L.; An, Y.; Dou, H.; Zhang, X. Carbon 2018, 136, 204. doi: 10.1016/j.carbon.2018.04.079
doi: 10.1016/j.carbon.2018.04.079
Wang, K.; Song, Y.; Yan, R.; Zhao, N.; Tian, X.; Li, X.; Guo, Q.; Liu, Z. Appl. Surf. Sci. 2017, 394, 569. doi: 10.1016/j.apsusc.2016.10.161
doi: 10.1016/j.apsusc.2016.10.161
Wang, Y. Y.; Hou, B. H.; Lü, H. Y.; Lü, C. L.; Wu, X. L. ChemistrySelect 2016, 1, 1441. doi: 10.1002/slct.201600133
doi: 10.1002/slct.201600133
Xie, L.; Sun, G.; Su, F.; Guo, X.; Kong, Q.; Li, X.; Huang, X.; Wan, L.; Song, Wen.; Li, K.; et al. J. Mater. Chem. A 2016, 4, 1637. doi: 10.1039/c5ta09043a
doi: 10.1039/c5ta09043a
Yoo, Y. E.; Park, J.; Kim, W. Appl. Surf. Sci. 2018, 433, 765. doi: 10.1016/j.apsusc.2017.10.044
doi: 10.1016/j.apsusc.2017.10.044
Barzegar, F.; Bello, A.; Momodu, D.; Madito, M. J.; Dangbegnon, J.; Manyala, N. J. Power Sources 2016, 309, 245. doi: 10.1016/j.jpowsour.2016.01.097
doi: 10.1016/j.jpowsour.2016.01.097
Wu, S.; Hui, K. S.; Hui, K. N.; Yun, J. M.; Kim, K. H. Chem. Eng. J. 2017, 317, 461. doi: 10.1016/j.cej.2017.02.040
doi: 10.1016/j.cej.2017.02.040
Zhao, D.; Chen, C.; Zhang, Q.; Chen, W.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Adv. Energy Mater. 2017, 7, 1700739. doi: 10.1002/aenm.201700739
doi: 10.1002/aenm.201700739
Burke, A. J. Power Sources 2000, 91, 37. doi: 10.1016/S0378-7753(00)00485-7
doi: 10.1016/S0378-7753(00)00485-7
Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210. doi: 10.1126/science.1249625
doi: 10.1126/science.1249625
Gogotsi, Y.; Simon, P. Science 2011, 334, 917. doi: 10.1126/science.1213003
doi: 10.1126/science.1213003
Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863. doi: 10.1021/nl102661q
doi: 10.1021/nl102661q
Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Energy Environ. Sci. 2012, 5, 7854. doi: 10.1039/c2ee21892e
doi: 10.1039/c2ee21892e
Zhuo Wang , Xue Bai , Kexin Zhang , Hongzhi Wang , Jiabao Dong , Yuan Gao , Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Xinpeng LIU , Liuyang ZHAO , Hongyi LI , Yatu CHEN , Aimin WU , Aikui LI , Hao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Yuyao Wang , Zhitao Cao , Zeyu Du , Xinxin Cao , Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014
Qi Li , Pingan Li , Zetong Liu , Jiahui Zhang , Hao Zhang , Weilai Yu , Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
Qingtang ZHANG , Xiaoyu WU , Zheng WANG , Xiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115
Zhaomei LIU , Wenshi ZHONG , Jiaxin LI , Gengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404
Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108
Huayan Liu , Yifei Chen , Mengzhao Yang , Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Xiangyu CAO , Jiaying ZHANG , Yun FENG , Linkun SHEN , Xiuling ZHANG , Juanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270
Qin ZHU , Jiao MA , Zhihui QIAN , Yuxu LUO , Yujiao GUO , Mingwu XIANG , Xiaofang LIU , Ping NING , Junming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022
Yuanchao LI , Weifeng HUANG , Pengchao LIANG , Zifang ZHAO , Baoyan XING , Dongliang YAN , Li YANG , Songlin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252
Jiahong ZHENG , Jingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170
Ru SONG , Biao WANG , Chunling LU , Bingbing NIU , Dongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050