Citation: YANG Kang, SHUAI Xiaorui, YANG Huachao, YAN Jianhua, CEN Kefa. Electrochemical Performance of Activated Graphene Powder Supercapacitors Using a Room Temperature Ionic Liquid Electrolyte[J]. Acta Physico-Chimica Sinica, ;2019, 35(7): 755-765. doi: 10.3866/PKU.WHXB201810009 shu

Electrochemical Performance of Activated Graphene Powder Supercapacitors Using a Room Temperature Ionic Liquid Electrolyte

  • Corresponding author: YANG Huachao, huachao@zju.edu.cn
  • Received Date: 8 October 2018
    Revised Date: 10 November 2018
    Accepted Date: 19 November 2018
    Available Online: 22 July 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51306159), the Zhejiang Provincial Natural Science Foundation, China (LR17E060002) and the Fundamental Research Funds for the Central Universities, China (2018XZZX002-17)the Zhejiang Provincial Natural Science Foundation, China LR17E060002the National Natural Science Foundation of China 51306159the Fundamental Research Funds for the Central Universities, China 2018XZZX002-17

  • Supercapacitors, advanced electrochemical devices, have attracted great interest due to their extraordinary properties, such as high power density, fast charging or discharging rate, and ultra-long cycle life. Currently, great efforts have been devoted to increasing their moderate energy density (typically < 5 Wh·kg-1). Especially, room temperature ionic liquids (RTILs) have been considered as a promising electrolyte for further improving supercapacitor's performances owing to their large voltage window, high thermal stability, and wide working temperature range. However, RTILs suffer from the high viscosity and poor conductivity stemming from their strong cation–anion interactions. In this work, we investigate the influences of solvent on the capacitive performance within RTIL-based supercapacitors. Activated graphene powders are employed as the electrode active materials, and 1-butyl-3-methyl-imidazolium tetrafluoroborate (BMIMBF4) is chosen as the electrolyte because of the wide applications in electrochemical energy storage. The mole fraction of BMIMBF4 (ρIL) in electrolytes can be regulated with adjusting the ratio of acetonitrile solvents (AN). Electrochemical measurements suggest that the solvent effects on the charge storage capability of supercapacitors depend strongly on the applied scan rate or current density. Specifically, at a lower scan rate of 10 mV·s-1, solvent exhibits a negligible influence on the electrochemical performance; however, at an elevated scan rate of 200 mV·s-1, solvent addition could prominently enhance the capacitance by ~2 folds. These results can resolve the controversial solvent effects reported in previous simulation and experimental studies. To interpret the as-obtained results, we further explore the solvent effects on the dynamic properties of electrolytes. It is found that solvent can effectively reduce the strong ion–ion interactions within pristine RTILs, thus decreasing the viscosity by ~29 times. Further electrical impedance spectroscopy tests suggest that the addition of solvent is able to significantly suppress the series resistance (by ~5.5 times) and dielectric relaxation time (by ~6.3 times), which thereby improves the rate capability of supercapacitors. We demonstrate that the maximum specific energy and power density of supercapacitor (ρIL = 0.25) are calculated to be 65.2 Wh·kg-1 at 1 A·g-1 and 18066.6 W·kg-1 at 20 A·g-1, respectively, among the best performances in the state-of-art literatures. More importantly, under an elevated working temperature of 50, its energy density can reach up to 85.5 Wh·kg-1 at 1 A·g-1, which is much higher than that of aqueous or organic solution based supercapacitors (< 10 Wh·kg-1) and lead-acid battery (20–35 Wh·kg-1), comparable to that of Ni metal hydride (40–100 Wh·kg-1) and lithium-ion battery (80–150 Wh·kg-1).
  • 加载中
    1. [1]

      Chen, X.; Paul, R.; Dai, L. Nat. Sci. Rev. 2017, 4, 453. doi: 10.1093/nsr/nwx009  doi: 10.1093/nsr/nwx009

    2. [2]

      Li, X. Q.; Chang, L.; Zhao, S. L.; Hao, C. L.; Lu, C. G.; Zhu, Y. H.; Tang, Z. Y. Acta Phys. -Chim. Sin. 2017, 33, 130.  doi: 10.3866/PKU.WHXB201609012

    3. [3]

      Yang, H.; Yang, J.; Bo, Z.; Zhang, S.; Yan, J.; Cen, K. J. Power Sources 2016, 324, 309. doi: 10.1016/j.jpowsour.2016.05.072  doi: 10.1016/j.jpowsour.2016.05.072

    4. [4]

      Shen, X. Y.; He, J. J.; Wang, N.; Huang, C. S. Acta Phys. -Chim. Sin. 2018, 34, 1029.  doi: 10.3866/PKU.WHXB201801122

    5. [5]

      González, A.; Goikolea, E.; Barrena, J. A.; Mysyk, R. Renew. Sustain. Energy Rev. 2016, 58, 1189. doi: 10.1016/j.rser.2015.12.249  doi: 10.1016/j.rser.2015.12.249

    6. [6]

      Yang, H. C.; Bo, Z.; Shuai, X. R.; Yan, J. H.; Cen, K. F. Acta Phys. -Chim. Sin. 2019, 35, 200.  doi: 10.3866/PKU.WHXB201803083

    7. [7]

      Kanchev, H.; Lu, D.; Colas, F.; Lazarov, V.; Francois, B. IEEE T. Ind. Electron. 2011, 58, 4583. doi: 10.1109/TIE.2011.2119451  doi: 10.1109/TIE.2011.2119451

    8. [8]

      Wu, Z.; Zhang, X. B. Acta Phys. -Chim. Sin. 2017, 33, 305.  doi: 10.3866/PKU.WHXB201611012

    9. [9]

      Yang, H.; Zhang, X.; Yang, J.; Bo, Z.; Hu, M.; Yan, J.; Cen, K. J. Phys. Chem. Lett. 2017, 8, 153. doi: 10.1021/acs.jpclett.6b02659  doi: 10.1021/acs.jpclett.6b02659

    10. [10]

      Simon, P.; Gogotsi, Y. Acc. Chem. Res. 2013, 46, 1094. doi: 10.1021/ar200306b  doi: 10.1021/ar200306b

    11. [11]

      Jiang, J.; Liu, B.; Liu, G.; Qian, D.; Yang, C.; Li, J. Electrochim. Acta 2018, 274, 121. doi: 10.1016/j.electacta.2018.04.097  doi: 10.1016/j.electacta.2018.04.097

    12. [12]

      Qiu, Z.; Wang, Y.; Bi, X.; Zhou, T.; Zhou, J.; Zhao, J.; Miao, Z.; Yi, W.; Fu, P.; Zhuo, S. J. Power Sources 2018, 376, 82. doi: 10.1016/j.jpowsour.2017.11.077  doi: 10.1016/j.jpowsour.2017.11.077

    13. [13]

      Yang, J.; Wu, H.; Zhu, M.; Ren, W.; Lin, Y.; Chen, H.; Pan, F. Nano Energy 2017, 33, 453. doi: 10.1016/j.nanoen.2017.02.007  doi: 10.1016/j.nanoen.2017.02.007

    14. [14]

      Quan, H.; Fan, X.; Wang, W.; Gao, W.; Dong, Y.; Chen, D. Appl. Surf. Sci. 2018, 460, 8. doi: 10.1016/j.apsusc.2018.01.202  doi: 10.1016/j.apsusc.2018.01.202

    15. [15]

      Moyo, B.; Momodu, D.; Fasakin, O.; Bello, A.; Dangbegnon, J.; Manyala, N. J. Mater. Sci. 2018, 53, 5229. doi: 10.1007/s10853-017-1911-y  doi: 10.1007/s10853-017-1911-y

    16. [16]

      Fedorov, M. V.; Kornyshev, A. A. Chem. Rev. 2014, 114, 2978. doi: 10.1021/cr400374x  doi: 10.1021/cr400374x

    17. [17]

      MacFarlane, D. R.; Tachikawa, N.; Forsyth, M.; Pringle, J. M.; Howlett, P. C.; Elliott, G. D.; Davis, J. H.; Watanabe, M.; Simon, P.; Angell, C. A. Energy Environ. Sci. 2014, 7, 232. doi: 10.1039/c3ee42099j  doi: 10.1039/c3ee42099j

    18. [18]

      Gong, Y.; Li, D.; Luo, C.; Fu, Q.; Pan, C. Green Chem. 2017, 19, 4132. doi: 10.1039/c7gc01681f  doi: 10.1039/c7gc01681f

    19. [19]

      Tian, J.; Cui, C.; Zheng, C.; Qian, W. Chin. Chem. Lett. 2018, 29, 599. doi: 10.1016/j.cclet.2018.01.027  doi: 10.1016/j.cclet.2018.01.027

    20. [20]

      Branco, L. C.; Rosa, J. N.; Ramos, J. J. M.; Afonso, C. A. M. Chem. -Eur. J. 2002, 8, 3671. doi: 10.1002/1521-3765(20020816)8:16 <3671::AID-CHEM3671>3.0.CO;2-9  doi: 10.1002/1521-3765(20020816)8:16<3671::AID-CHEM3671>3.0.CO;2-9

    21. [21]

      Elaiwi, A.; Hitchcock, P. B.; Seddon, K. R.; Srinivasan, N.; Tan, Y. M.; Welton, T.; Zora, J. A. J. Chem. Soc., Dalton Trans. 1995, 21, 3467. doi: 10.1039/DT9950003467  doi: 10.1039/DT9950003467

    22. [22]

      Vraneš, M.; Papović, S.; Tot, A.; Zec, N.; Gadžurić, S. J. Chem. Thermodyn. 2014, 76, 161. doi: 10.1016/j.jct.2014.03.025  doi: 10.1016/j.jct.2014.03.025

    23. [23]

      Stoppa, A.; Hunger, J.; Buchner, R. J. Chem. Eng. Data 2009, 54, 472. doi: 10.1021/je800468h  doi: 10.1021/je800468h

    24. [24]

      Li, W.; Zhang, Z.; Han, B.; Hu, S.; Xie, Y.; Yang, G. J. Phys. Chem. B 2007, 111, 6452. doi: 10.1021/jp071051m  doi: 10.1021/jp071051m

    25. [25]

      Feng, G.; Huang, J.; Sumpter, B. G.; Meunier, V.; Qiao, R. Phys. Chem. Chem. Phys. 2011, 13, 14723. doi: 10.1039/c1cp21428d  doi: 10.1039/c1cp21428d

    26. [26]

      Hantel, M. M.; Płatek, A.; Kaspar, T.; Nesper, R.; Wokaun, A.; Kötz, R. Electrochim. Acta 2013, 110, 234. doi: 10.1016/j.electacta.2013.04.032  doi: 10.1016/j.electacta.2013.04.032

    27. [27]

      Hummers, W. S.; Offeman, R. E. J. Am. Chem. Soc. 1958, 80, 1339. doi: 10.1021/ja01539a017  doi: 10.1021/ja01539a017

    28. [28]

      Bo, Z.; Zhu, W.; Ma, W.; Wen, Z.; Shuai, X.; Chen, J.; Yan, J.; Wang, Z.; Cen, K.; Feng, X. Adv. Mater. 2013, 25, 5799. doi: 10.1002/adma.201301794  doi: 10.1002/adma.201301794

    29. [29]

      Wang, X.; Zhi, L.; Müllen, K. Nano Lett. 2008, 8, 323. doi: 10.1021/nl072838r  doi: 10.1021/nl072838r

    30. [30]

      Zhu, Y.; Murali, S.; Stoller, M. P.; Ganesh, K. J.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M.; et al. Science 2011, 332, 1537. doi: 10.1126/science.1200770  doi: 10.1126/science.1200770

    31. [31]

      Kim, T.; Jung, G.; Yoo, S.; Suh, K. S.; Ruoff, R. S. ACS Nano 2013, 7, 6899. doi: 10.1021/nn402077v  doi: 10.1021/nn402077v

    32. [32]

      Qi, H.; Bo, Z.; Yang, S.; Duan, L.; Yang, H.; Yan, J.; Cen, K.; Ostrikov, K. Energy Storage Mater. 2018, doi: 10.1016/j.ensm.2018.07.019  doi: 10.1016/j.ensm.2018.07.019

    33. [33]

      Ye, J.; Tan, H.; Wu, S.; Ni, K.; Pan, F.; Liu, J.; Tao, Z.; Qu, Y.; Ji, H.; Simon, P.; et al. Adv. Mater. 2018, 30, 1801384. doi: 10.1002/adma.201801384  doi: 10.1002/adma.201801384

    34. [34]

      Xu, J.; Tan, Z.; Zeng, W.; Chen, G.; Wu, S.; Zhao, Y.; Ni, K.; Tao, Z.; Ikram, M.; Ji, H.; et al. Adv. Mater. 2016, 28, 5222. doi: 10.1002/adma.201600586  doi: 10.1002/adma.201600586

    35. [35]

      Su, P.; Guo, H. L.; Peng, S.; Ning, S. K. Acta Phys. -Chim. Sin. 2012, 28, 2745.  doi: 10.3866/PKU.WHXB20120822

    36. [36]

      Bo, Z.; Shuai, X.; Mao, S.; Yang, H.; Qain, J.; Chen, J.; Yan, J.; Cen, K. Sci. Rep. 2014, 4, 4684. doi: 10.1038/srep04684  doi: 10.1038/srep04684

    37. [37]

      Du, W. S.; Lu, Y. K.; Cai, Z. W.; Zhang, C. Acta Phys. -Chim. Sin. 2017, 33, 1828.  doi: 10.3866/PKU.WHXB201705089

    38. [38]

      Wang, Y. F.; Zuo, S. L. Acta Phys. -Chim. Sin. 2016, 32, 481.  doi: 10.3866/PKU.WHXB201511041

    39. [39]

      Xu, B.; Yue, S.; Sui, Z.; Zhang, X.; Hou, S.; Cao, G.; Yang, Y. Energy Environ. Sci. 2011, 4, 2826. doi: 10.1039/c1ee01198g  doi: 10.1039/c1ee01198g

    40. [40]

      Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. D.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Carbon 2007, 45, 1558. doi: 10.1016/j.carbon.2007.02.034  doi: 10.1016/j.carbon.2007.02.034

    41. [41]

      Burt, R.; Breitsprecher, K.; Daffos, B.; Taberna, P. L.; Simon, P.; Birkett, G.; Zhao, X. S.; Holm, C.; Salanne, M. J. Phys. Chem. Lett. 2016, 7, 4015. doi: 10.1021/acs.jpclett.6b01787  doi: 10.1021/acs.jpclett.6b01787

    42. [42]

      Xu, C.; Du, H.; Li, B.; Kang, F.; Zeng, Y. J. Electrochem. Soc. 2009, 156, A435. doi: 10.1149/1.3106112  doi: 10.1149/1.3106112

    43. [43]

      Taberna, P. L.; Simon, P.; Fauvarque, J. F. J. Electrochem. Soc. 2003, 150, A292. doi: 10.1149/1.1543948  doi: 10.1149/1.1543948

    44. [44]

      Cai, Y.; Luo, Y.; Dong, H.; Zhao, X.; Xiao, Y.; Liang, Y.; Hu, H.; Liu, Y.; Zheng, M. J. Power Sources 2017, 353, 260. doi: 10.1016/j.jpowsour.2017.04.021  doi: 10.1016/j.jpowsour.2017.04.021

    45. [45]

      Zhou, Y.; Ren, J.; Xia, L.; Zheng, Q.; Liao, J.; Long, E.; Xie, F.; Xu, C.; Lin, D. Electrochim. Acta 2018, 284, 336. doi: 10.1016/j.electacta.2018.07.134  doi: 10.1016/j.electacta.2018.07.134

    46. [46]

      Guo, H.; Ding, B.; Wang, J.; Zhang, Y.; Hao, X.; Wu, L.; An, Y.; Dou, H.; Zhang, X. Carbon 2018, 136, 204. doi: 10.1016/j.carbon.2018.04.079  doi: 10.1016/j.carbon.2018.04.079

    47. [47]

      Wang, K.; Song, Y.; Yan, R.; Zhao, N.; Tian, X.; Li, X.; Guo, Q.; Liu, Z. Appl. Surf. Sci. 2017, 394, 569. doi: 10.1016/j.apsusc.2016.10.161  doi: 10.1016/j.apsusc.2016.10.161

    48. [48]

      Wang, Y. Y.; Hou, B. H.; Lü, H. Y.; Lü, C. L.; Wu, X. L. ChemistrySelect 2016, 1, 1441. doi: 10.1002/slct.201600133  doi: 10.1002/slct.201600133

    49. [49]

      Xie, L.; Sun, G.; Su, F.; Guo, X.; Kong, Q.; Li, X.; Huang, X.; Wan, L.; Song, Wen.; Li, K.; et al. J. Mater. Chem. A 2016, 4, 1637. doi: 10.1039/c5ta09043a  doi: 10.1039/c5ta09043a

    50. [50]

      Yoo, Y. E.; Park, J.; Kim, W. Appl. Surf. Sci. 2018, 433, 765. doi: 10.1016/j.apsusc.2017.10.044  doi: 10.1016/j.apsusc.2017.10.044

    51. [51]

      Barzegar, F.; Bello, A.; Momodu, D.; Madito, M. J.; Dangbegnon, J.; Manyala, N. J. Power Sources 2016, 309, 245. doi: 10.1016/j.jpowsour.2016.01.097  doi: 10.1016/j.jpowsour.2016.01.097

    52. [52]

      Wu, S.; Hui, K. S.; Hui, K. N.; Yun, J. M.; Kim, K. H. Chem. Eng. J. 2017, 317, 461. doi: 10.1016/j.cej.2017.02.040  doi: 10.1016/j.cej.2017.02.040

    53. [53]

      Zhao, D.; Chen, C.; Zhang, Q.; Chen, W.; Liu, S.; Wang, Q.; Liu, Y.; Li, J.; Yu, H. Adv. Energy Mater. 2017, 7, 1700739. doi: 10.1002/aenm.201700739  doi: 10.1002/aenm.201700739

    54. [54]

      Burke, A. J. Power Sources 2000, 91, 37. doi: 10.1016/S0378-7753(00)00485-7  doi: 10.1016/S0378-7753(00)00485-7

    55. [55]

      Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210. doi: 10.1126/science.1249625  doi: 10.1126/science.1249625

    56. [56]

      Gogotsi, Y.; Simon, P. Science 2011, 334, 917. doi: 10.1126/science.1213003  doi: 10.1126/science.1213003

    57. [57]

      Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z. Nano Lett. 2010, 10, 4863. doi: 10.1021/nl102661q  doi: 10.1021/nl102661q

    58. [58]

      Thackeray, M. M.; Wolverton, C.; Isaacs, E. D. Energy Environ. Sci. 2012, 5, 7854. doi: 10.1039/c2ee21892e  doi: 10.1039/c2ee21892e

  • 加载中
    1. [1]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

    2. [2]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    3. [3]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    4. [4]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    5. [5]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    6. [6]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Qi Li Pingan Li Zetong Liu Jiahui Zhang Hao Zhang Weilai Yu Xianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-. doi: 10.3866/PKU.WHXB202311030

    8. [8]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    9. [9]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    12. [12]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    13. [13]

      Huayan Liu Yifei Chen Mengzhao Yang Jiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-. doi: 10.1016/j.actphy.2025.100063

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    16. [16]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    19. [19]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    20. [20]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

Metrics
  • PDF Downloads(20)
  • Abstract views(1141)
  • HTML views(233)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return