Citation: MU Xiaoyue, LI Lu. Photo-Induced Activation of Methane at Room Temperature[J]. Acta Physico-Chimica Sinica, ;2019, 35(9): 968-976. doi: 10.3866/PKU.WHXB201810007 shu

Photo-Induced Activation of Methane at Room Temperature

  • Corresponding author: LI Lu, luli@jlu.edu.cn
  • Received Date: 8 October 2018
    Revised Date: 30 November 2018
    Accepted Date: 30 November 2018
    Available Online: 7 September 2018

    Fund Project: the National Natural Science Foundation of China 21621001the 111 Project B17020the National Natural Science Foundation of China 21875090The project was supported by the National Natural Science Foundation of China (21875090, 21621001) and the 111 Project (B17020)

  • Methane, the most abundant constituent of natural gas, is a potential substitute for the dwindling petroleum resources for the chemical industry as a carbon-based feedstock. Over the last two decades, global research endeavors have focused on the development of more efficient and selective catalysts for the conversion of ubiquitous but inert methane. In addition, the transportation of gaseous methane in pipelines is unavoidably accompanied by leakage, and methane is recognized as a potent greenhouse gas (20 times more powerful than carbon dioxide per molecule). Thus, the conversion of methane into heavier derivatives is also of crucial environmental concern. Unfortunately, there is still a lack of economical and practical routes for methane conversion. Currently, the major route for methane conversion is the steam reforming of methane into synthetic gases, which is a multistep and energy-consuming route. Another option is to use photoenergy to drive the conversion of methane, which has significant advantages such as the capacity to minimize coking by running at room temperature. A promising approach to photocatalytic methane conversion is the photo-powered direct coupling or oxidation of methane to form ethane, methanol and hydrogen. The ethane or methanol produced can, in turn, be converted into ethene or liquid fuels through metathesis or dehydrogenation, respectively. Furthermore, the direct dehydrogenation of methane is the best way to produce clean H2 energy from fossil fuels since methane has the highest H/C ratio among hydrocarbons. However, the methane conversion efficiency of previously reported photocatalysts is low. Furthermore, the wavelength of light used in previously reported photocatalytic systems usually needs to be less than 270 nm, which is beyond the range of the solar spectrum (wavelength λ > 290 nm) reaching the Earth's surface. To achieve substantial yield and selectivity, and to exploit solar energy effectively, the development of photocatalytic systems with distinctly higher activity, higher selectivity, and lower photon energy threshold is desired. Over the past decades, many efforts have been made to activate the strong C―H bond in methane by light at room temperature. Based on the current state of research on photocatalytic methane conversion, we have focused our review on the following aspects: non-oxidative coupling of methane, dehydroaromatization of methane, and total and partial oxidation of methane. Finally, we summarize the difference between photocatalysis and thermal catalysis in the methane conversion reaction.
  • 加载中
    1. [1]

      Choudhary, V. R.; Kinage, A. K.; Choudhary, T. V. Science 1997, 275, 1286. doi: 10.1126/science.275.5304.1286  doi: 10.1126/science.275.5304.1286

    2. [2]

      Lunsford, J. H. Catal. Today 2000, 63, 165. doi: 10.1016/S0920-5861(00)00456-9  doi: 10.1016/S0920-5861(00)00456-9

    3. [3]

      Holmen, A. Catal. Today 2009, 142, 2. doi: 10.1016/j.cattod.2009.01.004  doi: 10.1016/j.cattod.2009.01.004

    4. [4]

      Schwach, P.; Pan, X. L.; Bao, X. H. Chem. Rev. 2017, 117, 8497. doi: 10.1021/acs.chemrev.6b00715  doi: 10.1021/acs.chemrev.6b00715

    5. [5]

      Gunsalus, N. J.; Koppaka, A.; Park, S. H.; Bischof, S. M.; Hashiguchi, B. G.; Periana, R. A. Chem. Rev. 2017, 117, 8521. doi: 10.1021/acs.chemrev.6b00739  doi: 10.1021/acs.chemrev.6b00739

    6. [6]

      Tang, P.; Zhu, Q. J.; Wu, Z. X.; Ma, D. Energy Environ. Sci. 2014, 7, 2580. doi: 10.1039/C4EE00604F  doi: 10.1039/C4EE00604F

    7. [7]

      Richard, A. K. Science 2010, 328, 1624. doi: 10.1126/science.328.5986.1624  doi: 10.1126/science.328.5986.1624

    8. [8]

      Schwarz, H. Angew. Chem. Int. Ed. 2011, 50, 10096. doi: 10.1002/anie.201006424  doi: 10.1002/anie.201006424

    9. [9]

      Lelieveld, J.; Lechtenböhmer, S.; Assonov, S. S.; Brenninkmeijer, C. A. M.; Dienst, C.; Fischedick, M.; Hanke, T. Nature 2005, 434, 841. doi: 10.1038/434841a  doi: 10.1038/434841a

    10. [10]

      Bergman, R. G. Nature 2007, 446, 391. doi: 10.1038/446391a  doi: 10.1038/446391a

    11. [11]

      Arora, S.; Prasad, R. RSC Adv. 2016, 6, 108668. doi: 10.1039/C6RA20450C  doi: 10.1039/C6RA20450C

    12. [12]

      Pakhare, D.; Spivey, J. Chem. Soc. Rev. 2014, 43, 7813. doi: 10.1039/C3CS60395D  doi: 10.1039/C3CS60395D

    13. [13]

      Jones, G.; Jakobsen, J. G.; Shim, S. S.; Kleis, J.; Andersson, M. P.; Rossmeisl, J.; Abild-Pedersen, F.; Bligaard, T.; Helveg, S.; Hinnemann, B. et al. J. Catal. 2008, 259, 147. doi: 10.1016/j.jcat.2008.08.003  doi: 10.1016/j.jcat.2008.08.003

    14. [14]

      Hook, J. P. V. Catal. Rev. -Sci. Eng. 1980, 21, 1. doi:10.1080/03602458008068059  doi: 10.1080/03602458008068059

    15. [15]

      Latimer, A. A.; Kulkarni, A. R.; Aljama, H, ; Montoya, J. H.; Yoo, J. S.; Tsai, C.; Abild-Pedersen, F.; Studt, F.; N rskov, J. K. Nat. Mater. 2017, 16, 225. doi:10.1038/nmat4760  doi: 10.1038/nmat4760

    16. [16]

      Liang, Z.; Li, T.; Kim, M.; Asthagiri, A.; Weaver, J. F. Science 2017, 356, 299. doi: 10.1126/science.aam9147  doi: 10.1126/science.aam9147

    17. [17]

      Labinger, J. A.; Bercaw, J. E. Nature 2002, 417, 507. doi: 10.1038/417507a  doi: 10.1038/417507a

    18. [18]

      Sushkevich, V. L.; Palagin, D.; Ranocchiari, M.; van Bokhoven, J. A. Science 2017, 356, 523. doi: 10.1126/science.aam9035  doi: 10.1126/science.aam9035

    19. [19]

      Berndt, H.; Martin, A.; Brückner, A.; Schreier, E.; Müller, D.; Kosslick, H.; Wolf, G. -U.; Lücke, B. J. Catal. 2000, 191, 384. doi: 10.1006/jcat.1999.2786  doi: 10.1006/jcat.1999.2786

    20. [20]

      R. A. Periana, O. Mironov, D. Taube, G. Bhalla, C. J. J. Science 2003, 301, 814. doi: 10.1126/science.1086466  doi: 10.1126/science.1086466

    21. [21]

      Lunsford, J. H. Angew. Chem. Int. Ed. 1995, 34, 970. doi: 10.1002/anie.199509701  doi: 10.1002/anie.199509701

    22. [22]

      Spivey, J. J.; Hutchings, G. Chem. Soc. Rev. 2014, 43, 792. doi: 10.1039/C3CS60259A  doi: 10.1039/C3CS60259A

    23. [23]

      Zheng, H.; Ma, D.; Bao, X. H.; Hu, J. Z.; Kwak, J. H.; Wang, Y.; Peden, C. H. F. J. Am. Chem. Soc. 2008, 130, 3722. doi: 10.1021/ja7110916  doi: 10.1021/ja7110916

    24. [24]

      Wang, L.; Tao, L.; Xie, M.; Xu, G. Catal. Lett. 1993, 21, 35. doi: 10.1007/BF00767368  doi: 10.1007/BF00767368

    25. [25]

      Guo, X. G.; Fang, G. Z.; Li, G.; Ma, H.; Fan, H. J.; Yu, L.; Ma, C.; Wu, X.; Deng, D. H.; Wei, M. M. et al. Science 2014, 344, 616. doi: 10.1126/science.1253150  doi: 10.1126/science.1253150

    26. [26]

      Cui, X. J.; Li, H. B.; Wang, Y.; Hu, Y. L.; Hua, L.; Li, H. Y.; Han, X. W.; Liu, Q. F.; Yang, F.; He, L. M. et al. Chem 2018, 4, 1902. doi: 10.1016/j.chempr.2018.05.006  doi: 10.1016/j.chempr.2018.05.006

    27. [27]

      Xu, Y. D.; Bao, X. H.; Lin, L. W. J. Catal. 2003, 216, 386. doi: 10.1016/S0021-9517(02)00124-0  doi: 10.1016/S0021-9517(02)00124-0

    28. [28]

      Kato, Y.; Yoshida, H.; Hattori, T. Chem. Commun. 1998, 21, 2389. doi: 10.1039/A806825I  doi: 10.1039/A806825I

    29. [29]

      Yuliati, L.; Yoshida, H. Chem. Soc. Rev. 2008, 37, 1592. doi: 10.1039/B710575B  doi: 10.1039/B710575B

    30. [30]

      Yoshida, H.; Matsushita, N.; Kato, Y.; Hattori, T. J. Phys. Chem. B 2003, 107, 8355. doi: 10.1021/jp034458+

    31. [31]

      Li, L.; Li, G. -D.; Yan, C.; Mu, X. -Y.; Pan, X. -L.; Zou, X. -X.; Wang, K. -X.; Chen, J. -S. Angew. Chem. Int. Ed. 2011, 50, 8299. doi: 10.1002/anie.201102320  doi: 10.1002/anie.201102320

    32. [32]

      Dietl, N.; Engeser, M.; Schwarz, H. Angew. Chem. Int. Ed. 2009, 48, 4861. doi: 10.1002/anie.200901596  doi: 10.1002/anie.200901596

    33. [33]

      Copéret, C. Chem. Rev. 2010, 110, 656. doi: 10.1021/cr900122p  doi: 10.1021/cr900122p

    34. [34]

      Yuliati, L.; Hamajima, T.; Hattori, T.; Yoshida, H. J. Phys. Chem. C 2008, 112, 7223. doi: 10.1021/jp712029w  doi: 10.1021/jp712029w

    35. [35]

      Anderson, M. W.; Terasaki, O.; Ohsuna, T.; Philippou, A.; Mackay, S. P.; Ferreira, A.; Rocha, J.; Lidin, S. Nature 1994, 367, 347. doi: 10.1038/367347a0  doi: 10.1038/367347a0

    36. [36]

      Li, L.; Cai, Y. -Y.; Li, G. -D.; Mu, X. -Y.; Wang, K. -X.; Chen, J. -S.; Angew. Chem. Int. Ed. 2012, 51, 4702. doi: 10.1002/anie.201200045  doi: 10.1002/anie.201200045

    37. [37]

      Li, L.; Fan, S.; Mu, X.; Mi, Z.; Li, C. -J. J. Am. Chem. Soc. 2014, 136, 7793. doi: 10.1021/ja5004119  doi: 10.1021/ja5004119

    38. [38]

      Li, L.; Mu, X.; Liu, W.; Kong, X.; Fan, S.; Mi, Z.; Li, C. J. Angew. Chem. Int. Ed. 2014, 53, 14106. doi: 10.1002/anie.201408754  doi: 10.1002/anie.201408754

    39. [39]

      Goldberger, J.; He, R. R.; Zhang, Y. F.; Lee, S.; Yan, H. Q.; Choi, H. J.; Yang, P. D. Nature 2003, 422, 599. doi: 10.1038/nature01551  doi: 10.1038/nature01551

    40. [40]

      Ibbetson, J. P.; Fini, P. T.; Ness, K. D.; DenBaars, S. P.; Speck, J. S.; Mishra, U. K. Appl. Phys. Lett. 2000, 77, 250. doi: 10.1063/1.126940  doi: 10.1063/1.126940

    41. [41]

      Eller, B. S.; Yang, J. L.; Nemanich, R. J. J. Electron. Mat. 2014, 43, 4560. doi: 10.1007/s11664-014-3383-z  doi: 10.1007/s11664-014-3383-z

    42. [42]

      Meng, L.; Chen, Z.; Ma, Z.; He, S.; Hou, Y.; Li, H.; Yuan, R.; Huang, X.; Wang, X.; Wang X.; et al. Energy Environ. Sci. 2018, 11, 294. doi: 10.1056/NEJMoa1304459  doi: 10.1056/NEJMoa1304459

    43. [43]

      Yu, L. H.; Shao, Y.; Li, D. Z. Appl. Catal. B-Environ. 2017, 204, 216. doi: 10.1016/j.apcatb.2016.11.039  doi: 10.1016/j.apcatb.2016.11.039

    44. [44]

      Kaliaguine, S. L.; Shelimov B. N.; Kazansky, V. B. J. Catal. 1978, 55, 384. doi: 10.1016/0021-9517(78)90225-7  doi: 10.1016/0021-9517(78)90225-7

    45. [45]

      Chen, X.; Li, Y.; Pan, X.; Cortie, D.; Huang, X.; Yi, Z. Nat. Commun. 2016, 7, 12273. doi: 10.1038/ncomms12273  doi: 10.1038/ncomms12273

    46. [46]

      Wada, K.; Yamada, H.; Watanabe Y.; Mitsudo, T. J. Chem. Soc. Faraday Trans. 1998, 94, 1771. doi: 10.1007/s10562-008-9491-8  doi: 10.1007/s10562-008-9491-8

    47. [47]

      López, H. H.; Martínez, A. Catal. Lett. 2002, 83, 37. doi: 10.1023/A:1020649313699  doi: 10.1023/A:1020649313699

    48. [48]

      Thampi, K. R.; Kiwi, J.; Grätzel, M. Catal. Lett. 1988, 1, 109. doi: 10.1007/BF00765891  doi: 10.1007/BF00765891

    49. [49]

      Ward, M. D.; Brazdil, J. F.; Mehandru, S. P.; Anderson, A. B. J. Phys. Chem. 1987, 91, 6515.  doi: 10.1021/j100310a019

    50. [50]

      Wada, K.; Yoshida, K.; Watanabe, Y. J. Chem. Soc. Faraday Trans. 1995, 91, 1647. doi: 10.1039/FT9959101647  doi: 10.1039/FT9959101647

    51. [51]

      Noceti, R. P.; Taylor, C. E.; D'Este, J. R. Catal. Today 1997, 33, 199. doi: 10.1016/S0920-5861(96)00155-1  doi: 10.1016/S0920-5861(96)00155-1

    52. [52]

      Villa, K.; Murcia-López, M.; Andreu, T.; Morante, J. R. Appl. Catal. B: Environ. 2015, 163, 150. doi: 10.1016/j.apcatb.2014.07.055  doi: 10.1016/j.apcatb.2014.07.055

    53. [53]

      Murcia-López, S.; Bacariza, M. C.; Villa, K.; Lopes, J. M.; Henriques, C.; Morante, J. R.; Andreu, T. ACS Catal. 2017, 7, 2878. doi: 10.1021/acscatal.6b03535  doi: 10.1021/acscatal.6b03535

    54. [54]

      Hu, A. H.; Guo, J. J.; Pan, H.; Zuo, Z. W. Science 2018, doi: 10.1126/science.aat9750  doi: 10.1126/science.aat9750

  • 加载中
    1. [1]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    2. [2]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    3. [3]

      Meng Lin Hanrui Chen Congcong Xu . Preparation and Study of Photo-Enhanced Electrocatalytic Oxygen Evolution Performance of ZIF-67/Copper(I) Oxide Composite: A Recommended Comprehensive Physical Chemistry Experiment. University Chemistry, 2024, 39(4): 163-168. doi: 10.3866/PKU.DXHX202308117

    4. [4]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    6. [6]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    7. [7]

      Xuejiao WangSuiying DongKezhen QiVadim PopkovXianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-0. doi: 10.3866/PKU.WHXB202408005

    8. [8]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    9. [9]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    10. [10]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    11. [11]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    12. [12]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    13. [13]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    14. [14]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    15. [15]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    18. [18]

      Yang XiaKangyan ZhangHeng YangLijuan ShiQun Yi . Improving Photocatalytic H2O2 Production over iCOF/Bi2O3 S-Scheme Heterojunction in Pure Water via Dual Channel Pathways. Acta Physico-Chimica Sinica, 2024, 40(11): 2407012-0. doi: 10.3866/PKU.WHXB202407012

    19. [19]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    20. [20]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

Metrics
  • PDF Downloads(7)
  • Abstract views(1010)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return