Citation: LUO Siqi, WANG Meina, ZHAO Weiwei, WANG Yilin. Interactions between Surfactants and Folic Acid and the Effects of Surfactants on the Photodegradation of Folic Acid[J]. Acta Physico-Chimica Sinica, ;2019, 35(7): 766-774. doi: 10.3866/PKU.WHXB201809038 shu

Interactions between Surfactants and Folic Acid and the Effects of Surfactants on the Photodegradation of Folic Acid

  • Corresponding author: WANG Yilin, yilinwang@iccas.ac.cn
  • Received Date: 25 September 2018
    Revised Date: 1 November 2018
    Accepted Date: 5 November 2018
    Available Online: 7 July 2018

    Fund Project: the National Natural Science Foundation of China 21633002The project was supported by the National Natural Science Foundation of China (21633002)

  • Interactions between surfactants and small organic molecules not only enhance the surface activity of the surfactants and induce aggregate transitions in them, but also improve the solubility and stability of the organic molecules. Understanding the interaction between surfactants and small molecules will help in widening the scope of application of surfactants. Folic acid, a member of the vitamin B family, has a pteridine ring, para-aminobenzoic acid, and glutamic acid, and is crucial for many reactions inside the human body. The unique structure of folic acid also facilitates the preparation of functional materials such as liquid crystals and gels. However, the poor solubility and precipitation of folic acid limit its applications. Therefore, it is essential to improve the solubility and stability of folic acid. Surfactants are efficient in solubilizing and stabilizing small molecules. The interactions of folic acid with four types of surfactants, namely, an anionic surfactant, sodium dodecyl sulfate (SDS); a cationic surfactant, dodecyl trimethylammonium bromide (DTAB); a cationic ammonium gemini surfactant, 12-6-12; and a cationic ammonium trimeric surfactant, 12-3-12-3-12; have been investigated at pH 7.0 by surface tension measurements, ultraviolet-visible (UV) absorption spectroscopy, dynamic light scattering, isothermal titration calorimetry, and nuclear magnetic resonance spectroscopy. At pH 7.0, the carboxylic acid groups of folic acid are deprotonated, so each folic acid molecule carries two negative charges. The addition of a small amount of folic acid sharply reduces the critical micelle concentration (CMC) of cationic surfactants and their surface tension at the CMC. However, the surface activity and aggregation of SDS show only minimal changes with the introduction of folic acid. In addition, the photodegradation of folic acid in the presence of different surfactants is studied by fluorescence and UV absorption spectroscopy. When irradiated with UV light, folic acid undergoes rapid degradation in aqueous solution, in the absence of any surfactants. In contrast, the degradation is greatly suppressed in the presence of surfactants. The extent of suppression by cationic surfactants is more significant than that by the anionic surfactant. The residual folic acid concentration increases from nearly 0 in the absence of any surfactant to 43%, 89%, 96%, and 96% in the presence of SDS, DTAB, 12-6-12, and 12-3-12-3-12, respectively, in the concentration range studied. The amount of surfactant required to prevent the degradation decreases with an increase in the degree of oligomerization of the cationic surfactants. The greater number of binding sites and hydrophobic tails in the gemini and oligomeric surfactants result in much stronger electrostatic and hydrophobic interactions with folic acid. In addition, the close and compact packing in these surfactant molecules prevents folic acid from coming in contact with oxygen, thereby retaining its stability and preserving its properties. This work provides a new methodology for regulating the surface activity of the surfactants and their aggregation in the presence of small functional molecules, which in turn improves the stability of the small molecules that are otherwise unstable.
  • 加载中
    1. [1]

      Off, M. K.; Steindal, A. E.; Porojnicu, A. C.; Juzeniene, A.; Vorobey, A.; Johnsson, A.; Moan, J. J. Photochem. Photobiol. B 2005, 80, 47. doi: 10.1016/j.jphotobiol.2005.03.001  doi: 10.1016/j.jphotobiol.2005.03.001

    2. [2]

      Juzeniene, A.; Tam, T. T. T.; Iani, V.; Moan, J. T. J. Photochem. Photobiol. B 2013, 126, 11. doi: 10.1016/j.jphotobiol.2013.05.011  doi: 10.1016/j.jphotobiol.2013.05.011

    3. [3]

      Hu, J. M.; Qian, Y. F.; Wang, X. F.; Liu, T.; Liu, S. Y. Langmuir 2012, 28, 2073. doi: 10.1021/la203992q  doi: 10.1021/la203992q

    4. [4]

      Leamon, C. P.; Reddy, J. A. Adv. Drug Deliv. Rev. 2004, 56, 1127. doi: 10.1016/j.addr.2004.01.008  doi: 10.1016/j.addr.2004.01.008

    5. [5]

      Li, W. J.; Shi, J.; Zhang, C.; Li, M.; Gan, L.; Xu, H. B.; Yang. X. L. J. Mater. Chem. B 2014, 2, 4901. doi: 10.1039/c4tb00502c  doi: 10.1039/c4tb00502c

    6. [6]

      Zhu, J.; Liao, L.; Zhu, L. N.; Kong, J. L.; Liu, B. H. Acta Chim. Sinica 2013, 71, 69.  doi: 10.6023/A12090680

    7. [7]

      Bonazzi, S.; DeMorais, M. M.; Gottarelli, G.; Mariani, P.; Spada, G. P. Angew. Chem. Int. Ed. 1993, 32, 248. doi: 10.1002/anie.199302481  doi: 10.1002/anie.199302481

    8. [8]

      Xing, P. Y.; Chu, X. X.; Du, G. Y.; Li, M. Z.; Su, J.; Hao, A. Y.; Hou, Y. H.; Li, S. Y.; Ma, M. F.; Wu, L.; et al. RSC Adv. 2013, 3, 15237. doi: 10.1039/c3ra42129e  doi: 10.1039/c3ra42129e

    9. [9]

      Xing, P. Y.; Chu, X. X.; Ma, M. F.; Li, S. Y.; Hao, A. Y. Phys. Chem. Chem. Phys. 2014, 16, 8346. doi: 10.1039/c4cp00367e  doi: 10.1039/c4cp00367e

    10. [10]

      Xing, P. Y.; Chu, X. X.; Ma, M. F.; Li, S. Y.; Zhang, Y. M.; Hao, A. Y. RSC Adv. 2014, 4, 36633. doi: 10.1039/c4ra04585h  doi: 10.1039/c4ra04585h

    11. [11]

      Akhtar, M. J.; Khan, M. A.; Ahmad, I. J. Pharm. Biomed. Anal. 1999, 19, 269. doi: 10.1016/S0731-7085(98)00038-7  doi: 10.1016/S0731-7085(98)00038-7

    12. [12]

      Thomas, A. H.; Suárez, G.; Cabrerizo, F. M.; Martino, R.; Capparelli, A. L. J. Photochem. Photobiol. A: Chem. 2000, 135, 147. doi: 10.1016/S1010-6030(00)00304-X  doi: 10.1016/S1010-6030(00)00304-X

    13. [13]

      Jamil Akhtar, M.; Ataullah Khan, M.; Ahmad, I. J. Pharm. Biomed. Anal. 1999, 19, 269. doi: 10.1016/S0731-7085(98)00038-7  doi: 10.1016/S0731-7085(98)00038-7

    14. [14]

      Vorobey, P.; Steindal, A. E.; Off, M. K.; Vorobey, A.; Moan, J. Photochem. Photobiol. 2006, 82, 817. doi: 10.1562/2005-11-23-RA-739  doi: 10.1562/2005-11-23-RA-739

    15. [15]

      Liang, L.; Subirade, M. J. Phys. Chem. B 2010, 114, 6707. doi: 10.1021/jp101096r  doi: 10.1021/jp101096r

    16. [16]

      Bourassa, P.; Tajmir-Riahi, H. A. J. Phys. Chem. B 2012, 116, 513. doi: 10.1021/jp2083677  doi: 10.1021/jp2083677

    17. [17]

      Tavares, G. M.; Croguennec, T.; Le, S.; Lerideau, O.; Hamon, P.; Carvalho, A. F.; Bouhallab, S. Langmuir 2015, 31, 12481. doi: 10.1021/acs.langmuir.5b02299  doi: 10.1021/acs.langmuir.5b02299

    18. [18]

      Madziva, H.; Kailasapathy, K.; Phillips, M. J. Microencapsul. 2005, 22, 343. doi: 10.1080/02652040500100931  doi: 10.1080/02652040500100931

    19. [19]

      Drummond, C. J.; Fong, C. Curr. Opin. Colloid Interface Sci. 1999, 4, 449. doi: 10.1016/S1359-0294(00)00020-0  doi: 10.1016/S1359-0294(00)00020-0

    20. [20]

      Zhang, H. X.; Annunziata, O. Langmuir 2008, 24, 10680. doi: 10.1021/la802080t  doi: 10.1021/la802080t

    21. [21]

      Bhat, P. A.; Rather, G. M.; Dar, A. A. J. Phys. Chem. B 2009, 113, 997. doi: 10.1021/jp807229c.  doi: 10.1021/jp807229c

    22. [22]

      Xie, H. J.; Liu, C. C.; Sun, Q.; Gu, Q.; Lei, Q. F.; Fang, W. J. Acta Phys. -Chim. Sin. 2016, 32, 295.  doi: 10.3866/PKU.WHXB201609231

    23. [23]

      Treger, J. S.; Ma, V. Y.; Gao, Y.; Wang, C. C.; Jeon, S.; Robinson, J. M.; Wang, H. L.; Johal, M. S. Langmuir 2008, 24, 13127. doi: 10.1021/la802080t  doi: 10.1021/la802080t

    24. [24]

      Carlotti, M. E.; Sapino, S.; Vione, D.; Pelizzetti, E.; Trotta, M. J. Dispersion Sci. Technol. 2004, 25, 193. doi: 10.1081/dis-120030666  doi: 10.1081/dis-120030666

    25. [25]

      Leung, M. H. M.; Colangelo, H.; Kee, T. W. Langmuir 2008, 24, 5672. doi: 10.1021/la800780w  doi: 10.1021/la800780w

    26. [26]

      Wan, Z. Z.; Ke, D.; Hong, J. X.; Wang, X. Y.; Shen, W. G. Colloids Surf., A Physicochem. Eng. Aspects 2012, 414, 267. doi: 10.1016/j.colsurfa.2012.08.046  doi: 10.1016/j.colsurfa.2012.08.046

    27. [27]

      Wang, M. N.; Wu, C. X.; Tang, Y. Q.; Fan, Y. X.; Han, Y. C.; Wang, Y. L. Soft Matter 2014, 10, 3432. doi: 10.1039/c4sm00086b  doi: 10.1039/c4sm00086b

    28. [28]

      Shikata, T.; Hirata, H.; Kotaka, T. Langmuir 1989, 5, 398. doi: 10.1021/la00086a020  doi: 10.1021/la00086a020

    29. [29]

      Hassan, P.; Yakhmi, J. Langmuir 2007, 23, 10044. doi: 10.1021/la701542k  doi: 10.1021/la701542k

    30. [30]

      Wattebled, L.; Laschewsky. Langmuir 2000, 16, 7187. doi: 10.1021/la000517o  doi: 10.1021/la000517o

    31. [31]

      Yu, D.F.; Huang, X.; Deng, M.L.; Wang, Y. L. J. Phys. Chem. B 2010, 114, 14955. doi: 10.1021/jp106031d  doi: 10.1021/jp106031d

    32. [32]

      Jiang, L. X.; Huang, J. B.; Bahramian, A.; Li, P. X.; Thomas, R. K.; Penfold, J. Langmuir 2012, 28, 327. doi: 10.1021/la2040938  doi: 10.1021/la2040938

    33. [33]

      Wang, R. J.; Tian, M. Z.; Wang, Y. L. Soft Matter 2014, 10, 1705. doi: 10.1039/c3sm52819g  doi: 10.1039/c3sm52819g

    34. [34]

      Wang, M. N.; Fan, Y. X.; Han, Y. C.; Nie, Z. X.; Wang, Y. L. Langmuir 2013, 29, 14839. doi: 10.1021/la403582y  doi: 10.1021/la403582y

    35. [35]

      Laschewsky, A.; Wattebled, L.; Arotarena, M.; Habib-Jiwan, J.; Rakotoaly, R. H. Langmuir 2005, 21, 7170. doi: 10.1021/la050952o  doi: 10.1021/la050952o

    36. [36]

      Hou, Y. B.; Han, Y. C.; Deng, M. L.; Wang, Y. L. Langmuir 2008, 26, 28. doi: 10.1021/la903672r  doi: 10.1021/la903672r

    37. [37]

      In, M.; Bec, V.; Aguerre-Chariol, O.; Zana, R. Langmuir 2000, 16, 141. doi: 10.1021/la990645g  doi: 10.1021/la990645g

    38. [38]

      Fan, Y. X.; Han, Y. C.; Wang, Y. L. Acta Phys. -Chim. Sin. 2016, 32, 214.  doi: 10.3866/PKU.WHXB201511022

    39. [39]

      Zana, R.; Levy, H.; Papoutsi, D.; Beinert, G. Langmuir 1995, 11, 3694. doi: 10.1021/la00010a018  doi: 10.1021/la00010a018

    40. [40]

      Lou, P. X.; Wang, Y. J.; Bai, G. Y.; Fan, C. Y.; Wang, Y. L. Acta Phys. -Chim. Sin. 2013, 29, 1401.  doi: 10.3866/PKU.WHXB201304282

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    4. [4]

      Qiuyu Ming Huijun Jiang Zhihao Zhang . A Sightseeing Tour of Folic Acid Processing Plant. University Chemistry, 2024, 39(9): 11-15. doi: 10.12461/PKU.DXHX202404092

    5. [5]

      Yongmin Zhang Shuang Guo Mingyue Zhu Menghui Liu Sinong Li . Design and Improvement of Physicochemical Experiments Based on Problem-Oriented Learning: a Case Study of Liquid Surface Tension Measurement. University Chemistry, 2024, 39(2): 21-27. doi: 10.3866/PKU.DXHX202307026

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    8. [8]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    9. [9]

      Zhifeng CAIYing WUYanan LIGuiyu MENGTianyu MIAOYihao ZHANG . Effective detection of malachite green by folic acid stabilized silver nanoclusters. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 983-993. doi: 10.11862/CJIC.20240394

    10. [10]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    11. [11]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    12. [12]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    13. [13]

      Xinyu ZENGGuhua TANGJianming OUYANG . Inhibitory effect of Desmodium styracifolium polysaccharides with different content of carboxyl groups on the growth, aggregation and cell adhesion of calcium oxalate crystals. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1563-1576. doi: 10.11862/CJIC.20230374

    14. [14]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    15. [15]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    16. [16]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    17. [17]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    18. [18]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

Metrics
  • PDF Downloads(12)
  • Abstract views(939)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return