Citation: WANG Lu, SUN Wei, LIU Chao. Homodinuclear Ferrous Group Metal Complexes and Their Application in Homogeneous Catalysis[J]. Acta Physico-Chimica Sinica, ;2019, 35(7): 697-708. doi: 10.3866/PKU.WHXB201807071 shu

Homodinuclear Ferrous Group Metal Complexes and Their Application in Homogeneous Catalysis

  • Corresponding author: LIU Chao, chaoliu@licp.cas.cn
  • Received Date: 28 July 2018
    Revised Date: 4 September 2018
    Accepted Date: 4 September 2018
    Available Online: 7 July 2018

    Fund Project: the National Natural Science Foundation of China 21703265the National Natural Science Foundation of China 21603245the National Natural Science Foundation of China 91745110The project was supported by the National Natural Science Foundation of China (91745110, 21673261, 21603245, 21633013, 21703265), a Start-up Funding from Lanzhou Institute of Chemical Physics (LICP), the Young Elite Scientist Sponsorship Program by Chain Association for Science and Technology (CAST), the Youth Innovation Promotion Association Chinese Academy of Sciences (CAS) (2018458) and the 'Light of West China' Programthe National Natural Science Foundation of China 21633013a Start-up Funding from Lanzhou Institute of Chemical Physics (LICP)  the National Natural Science Foundation of China 21673261the Youth Innovation Promotion Association Chinese Academy of Sciences (CAS) 2018458the 'Light of West China' Program  the Young Elite Scientist Sponsorship Program by Chain Association for Science and Technology (CAST)  

  • With the development of synthetic chemistry, more and more efficient catalysts are exploited to activate inert chemical bonds and organic molecules. In the synthetic chemistry, catalysts play an important role, scientists are paying more and more attention to the design and synthesis of catalysts. The majority of catalysts in homogeneous catalytic systems belong to mononuclear active species. In addition to the development of catalysis science, major research is also being conducted on the development of the coordination environment for metal centers to increase their catalytic ability and thereby create enhanced catalytic processes. The catalytic activity of dinuclear catalysts varies from those of mononuclear catalysts. Due to the synergistic effect between the two metal centers, the catalytic activity of dinuclear catalytic systems exhibits particular performance characteristics. The first row of elements in group Ⅷ of the periodic table, Fe, Co, and Ni, are also known as the ferrous group. These metals have drawn attention in recent years because of their relatively low price, stable structure, commercial availability, and ability to catalyze various type of reactions. Homodinuclear ferrous group metal complexes are applied in a wide variety of reactions, including hydroboration, hydrosilylation, cross-coupling reactions, asymmetric 1, 4-addition, asymmetric Mannich reactions, CO2 activation, copolymerization, and alkyne cyclotrimerizations. Compared with mononuclear metal catalytic systems, there are currently relatively few types of homogenous catalytic systems that are catalyzed by bimetal catalysts. However, such catalytic systems possess significant advantages over mononuclear catalytic systems. For example, the catalytic activity and reaction selectivity of dinuclear metal catalytic systems are far superior, the reaction conditions milder, and the operations required simpler. However, research on the mechanisms of dinuclear metal catalytic systems is still insufficient. For example, the interaction between metals and substrates requires further investigation. This review focusses on the synthesis and characterization of homodinuclear bimetallic iron complexes. The application of homodinuclear iron, cobalt, and nickel complexes in homogeneous catalytic systems is introduced and summarized in detail. Finally, the challenges for the future development of homogeneous catalytic systems that utilize homodinuclear bimetallic iron complexes are outlined.
  • 加载中
    1. [1]

      Yu, W. F.; Meng, X. G.; Liu, Y.; Li, X. H. Acta Phys. -Chim. Sin. 2013, 29, 2041.  doi: 10.3866/PKU.WHXB201306282

    2. [2]

      Luo, K. J.; Geng, H.; Zhang, C. Y.; Ni, H. L.; Li, Q. Chin. J. Inorg. Chem. 2017, 33, 405.  doi: 10.11862/cjic.2017.026

    3. [3]

      Huang, S. P.; Yuan, Z. Z. Acta Phys. -Chim. Sin. 2009, 25, 1599.  doi: 10.3866/PKU.WHXB20090753

    4. [4]

      Guo, L. Q.; Shi, X. L.; Ruan, W. J.; Zhang, X. H.; Zhu, Z. A. Acta Phys. -Chim. Sin. 2010, 26, 1195.  doi: 10.3866/PKU.WHXB20100336

    5. [5]

      Liu, H.; Zang, N.; Zhao, F. Y.; Liu, K.; Li, Y.; Ruan, W. J. Acta Phys. -Chim. Sin. 2014, 30, 1801.  doi: 10.3866/PKU.WHXB201407171

    6. [6]

      Liu, F. Q.; Zhao, J.; Zhang, D.; Duan, X. Q.; Wang, L.; Deng, Y. Y.; Li, W. H. Chin. J. Inorg. Chem. 2015, 31, 1402.  doi: 10.11862/cjic.2015.166

    7. [7]

      Behlen, M. J.; Zhou, Y. Y.; Steiman, T. J.; Pal, S.; Hartline, D. R.; Zeller, M.; Uyeda, C. Dalton Trans. 2017, 46, 5493. doi: 10.1039/c6dt04465d  doi: 10.1039/c6dt04465d

    8. [8]

      Gavrilova, A. L.; Bosnich, B. Chem. Rev. 2004, 104, 349. doi: 10.1021/cr020604g  doi: 10.1021/cr020604g

    9. [9]

      Do, L. H.; Xue, G.; Que, L., Jr.; Lippard, S. J. Inorg. Chem. 2012, 51, 2393. doi: 10.1021/ic202379b  doi: 10.1021/ic202379b

    10. [10]

      Ohki, Y.; Hatanaka, T.; Tatsumi, K. J. Am. Chem. Soc. 2008, 130, 17174. doi: 10.1021/ja8063028  doi: 10.1021/ja8063028

    11. [11]

      Zhang, F.; Song, H.; Zhuang, X.; Tung, C. H.; Wang, W. J. Am. Chem. Soc. 2017, 139, 17775. doi: 10.1021/jacs.7b11416  doi: 10.1021/jacs.7b11416

    12. [12]

      Obligacion, J. V.; Chirik, P. J. Org. Lett. 2013, 15, 2680. doi: 10.1021/ol400990u  doi: 10.1021/ol400990u

    13. [13]

      Iovan, D. A.; Betley, T. A. J. Am. Chem. Soc. 2016, 138, 1983. doi: 10.1021/jacs.5b12582  doi: 10.1021/jacs.5b12582

    14. [14]

      Tong, P.; Yang, D.; Li, Y.; Wang, B.; Qu, J. Organometallics 2015, 34, 3571. doi: 10.1021/acs.organomet.5b00387  doi: 10.1021/acs.organomet.5b00387

    15. [15]

      Wilkinson, E. C.; Dong, Y.; Que, L. J. Am. Chem. Soc. 1994, 116, 8394. doi: 10.1021/ja00097a068  doi: 10.1021/ja00097a068

    16. [16]

      Mo, Z.; Zhang, Q.; Deng, L. Organometallics 2012, 31, 6518. doi: 10.1021/om300722g  doi: 10.1021/om300722g

    17. [17]

      Chen, Z.; Furutachi, M.; Kato, Y.; Matsunaga, S.; Shibasaki, M. Angew. Chem. Int. Ed. 2009, 48, 2218. doi: 10.1002/anie.200805967  doi: 10.1002/anie.200805967

    18. [18]

      Gao, J.; Woolley, F. R.; Zingaro, R. A. Org. Biomol. Chem. 2005, 3, 2126. doi: 10.1039/b503971a  doi: 10.1039/b503971a

    19. [19]

      Kember, M. R.; White, A. J. P.; Williams, C. K. Macromolecules 2010, 43, 2291. doi: 10.1021/ma902582m  doi: 10.1021/ma902582m

    20. [20]

      Yu, C. Y.; Chuang, H. J.; Ko, B. T. Catal. Sci. Technol. 2016, 6, 1779. doi: 10.1039/c5cy01290b  doi: 10.1039/c5cy01290b

    21. [21]

      Lin, P. -M.; Chang, C. -H.; Chuang, H. -J.; Liu, C. -T.; Ko, B. -T.; Lin, C. -C. ChemCatChem 2016, 8, 984. doi: 10.1002/cctc.201501280  doi: 10.1002/cctc.201501280

    22. [22]

      Chen, Z.; Morimoto, H.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2008, 130, 2170. doi: 10.1021/ja710398q  doi: 10.1021/ja710398q

    23. [23]

      Chen, Z.; Yakura, K.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2008, 10, 3239. doi: 10.1021/ol800965t  doi: 10.1021/ol800965t

    24. [24]

      Shepherd, N. E.; Tanabe, H.; Xu Y.; Matsunaga, S.; Shibasaki, M. J. Am. Chem. Soc. 2010, 132, 3666. doi: 10.1021/ja1002636  doi: 10.1021/ja1002636

    25. [25]

      Mouri, S.; Chen, Z.; Matsunaga, S.; Shibasaki, M. Chem. Commun. 2009, 5138. doi: 10.1039/b912380f  doi: 10.1039/b912380f

    26. [26]

      Shibasaki, M.; Matsunaga, S.; Kato, Y.; Chen, Z. Synlett 2009, 2009, 1635. doi: 10.1055/s-0029-1217192  doi: 10.1055/s-0029-1217192

    27. [27]

      Mitsunuma, H.; Matsunaga, S. Chem. Commun. 2011, 47, 469. doi: 10.1039/c0cc02152k  doi: 10.1039/c0cc02152k

    28. [28]

      Xu, Y.; Matsunaga, S.; Shibasaki, M. Org. Lett. 2010, 12, 3246. doi: 10.1021/ol101185p  doi: 10.1021/ol101185p

    29. [29]

      Gopinath, P.; Watanabe, T.; Shibasaki, M. Org. Lett. 2012, 14, 1358. doi: 10.1021/ol3002078  doi: 10.1021/ol3002078

    30. [30]

      Zhang, S.; Deng, P.; Zhou, J.; Liu, M.; Liang, G.; Xiong, Y.; Zhou, H. Chem. Commun. 2017, 53, 12914. doi: 10.1039/c7cc06468c  doi: 10.1039/c7cc06468c

    31. [31]

      Dible, B. R.; Sigman, M. S. J. Am. Chem. Soc. 2003, 125, 872. doi: 10.1021/ja0286876  doi: 10.1021/ja0286876

    32. [32]

      Laskowski, C. A.; Hillhouse, G. L. Organometallics 2009, 28, 6114. doi: 10.1021/om900783u  doi: 10.1021/om900783u

    33. [33]

      Miyazaki, S.; Koga, Y.; Matsumoto, T.; Matsubara, K. Chem. Commun. 2010, 46, 1932. doi: 10.1039/b924716e  doi: 10.1039/b924716e

    34. [34]

      Matsubara, K.; Yamamoto, H.; Miyazaki, S.; Inatomi, T.; Nonaka, K.; Koga, Y.; Yamada, Y.; Veiros, L. F.; Kirchner, K. Organometallics 2016, 36, 255. doi: 10.1021/acs.organomet.6b00451  doi: 10.1021/acs.organomet.6b00451

    35. [35]

      Nagao, S.; Matsumoto, T.; Koga, Y.; Matsubara, K. Chem. Lett. 2011, 40, 1036. doi: 10.1246/cl.2011.1036  doi: 10.1246/cl.2011.1036

    36. [36]

      Wu, J.; Nova, A.; Balcells, D.; Brudvig, G. W.; Dai, W.; Guard, L. M.; Hazari, N.; Lin, P. H.; Pokhrel, R.; Takase, M. K. Chem. Eur. J. 2014, 20, 5327. doi: 10.1002/chem.201305021  doi: 10.1002/chem.201305021

    37. [37]

      Durr, A. B.; Fisher, H. C.; Kalvet, I.; Truong, K. N.; Schoenebeck, F. Angew. Chem. Int. Ed. 2017, 56, 13431. doi: 10.1002/anie.201706423  doi: 10.1002/anie.201706423

    38. [38]

      Yang, X.; Wang, Z. -X. Organometallics 2014, 33, 5863. doi: 10.1021/om500452c  doi: 10.1021/om500452c

    39. [39]

      Zhou, Y. Y.; Hartline, D. R.; Steiman, T. J.; Fanwick, P. E.; Uyeda, C. Inorg. Chem. 2014, 53, 11770. doi: 10.1021/ic5020785  doi: 10.1021/ic5020785

    40. [40]

      Steiman, T. J.; Uyeda, C. J. Am. Chem. Soc. 2015, 137, 6104. doi: 10.1021/jacs.5b03092  doi: 10.1021/jacs.5b03092

    41. [41]

      Pappas, I.; Treacy, S.; Chirik, P. J. ACS Catal. 2016, 6, 4105. doi: 10.1021/acscatal.6b01134  doi: 10.1021/acscatal.6b01134

    42. [42]

      Léonard, N. G.; Chirik, P. J. ACS Catal. 2017, 8, 342. doi: 10.1021/acscatal.7b03909  doi: 10.1021/acscatal.7b03909

    43. [43]

      Pal, S.; Uyeda, C. J. Am. Chem. Soc. 2015, 137, 8042. doi: 10.1021/jacs.5b04990  doi: 10.1021/jacs.5b04990

    44. [44]

      Zhou, Y. -Y.; Uyeda, C. Angew. Chem. Int. Ed. 2016, 55, 3171. doi: 10.1002/anie.201511271  doi: 10.1002/anie.201511271

    45. [45]

      Pal, S.; Zhou, Y. Y.; Uyeda, C. J. Am. Chem. Soc. 2017, 139, 11686. doi: 10.1021/jacs.7b05901  doi: 10.1021/jacs.7b05901

    46. [46]

      Hartline, D. R.; Zeller, M.; Uyeda, C. J. Am. Chem. Soc. 2017, 139, 13672. doi: 10.1021/jacs.7b08691  doi: 10.1021/jacs.7b08691

    47. [47]

      Rounds, H. R.; Zeller, M.; Uyeda, C. Organometallics 2018, 37, 545. doi: 10.1021/acs.organomet.7b00862  doi: 10.1021/acs.organomet.7b00862

    48. [48]

      Powers, I. G.; Andjaba, J. M.; Luo, X.; Mei, J.; Uyeda, C. J. Am. Chem. Soc. 2018, 140, 4110. doi: 10.1021/jacs.8b00503  doi: 10.1021/jacs.8b00503

  • 加载中
    1. [1]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    2. [2]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    3. [3]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    6. [6]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    7. [7]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    12. [12]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    13. [13]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    17. [17]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    18. [18]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(9)
  • Abstract views(724)
  • HTML views(105)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return