Citation: JIANG Zhe, YU Fei, MA Jie. Design of Graphene-based Adsorbents and Its Removal of Antibiotics in Aqueous Solution[J]. Acta Physico-Chimica Sinica, ;2019, 35(7): 709-724. doi: 10.3866/PKU.WHXB201807051 shu

Design of Graphene-based Adsorbents and Its Removal of Antibiotics in Aqueous Solution

  • Corresponding author: MA Jie, jma@tongji.edu.cn
  • Received Date: 20 July 2018
    Revised Date: 14 September 2018
    Accepted Date: 14 September 2018
    Available Online: 25 July 2018

    Fund Project: the National Natural Science Foundation of China 21577099the National Natural Science Foundation of China 21777118The project was supported by the National Natural Science Foundation of China (21577099, 21777118)

  • It is a widespread concern that the extensive use of antibiotics has caused not only harm to the human body but also heavy environmental pollution. Because of its high efficiency and universal applicability, adsorption technology has significant application potential for the removal of antibiotics. The development of new adsorbents is critical for high-efficiency adsorption treatment. In recent years, the excellent physical, chemical, and adsorption properties of graphene have made it an important antibiotic adsorbent. The high specific surface area and large number of pores of graphene provide many adsorption sites for antibiotics. In addition, the conjugated structure makes graphene relatively electronegative, which also affects adsorption. Due to the limitations of graphene and the increasing requirements for efficiency and stability of graphene adsorbents, a variety of graphene-based adsorbents have been developed to solve the issues of graphene agglomeration in aqueous solutions, poor graphene dispersibility, and poor adsorption performance. Thus far, there has not been a systematic review on the design, synthesis, and adsorption mechanism of graphene-based composites for the removal of antibiotics in aqueous solutions. The design and preparation methods for magnetic graphene adsorbents, polymer/graphene adsorbents, three-dimensional graphene gels, graphene/biochar adsorbents, and graphene-based adsorbents for catalytic degradation of antibiotics are also reviewed. We show the synthesis and design concepts of various graphene-based adsorbents, as well as their different physical and chemical properties and adsorption performance, so that we can distinguish and select different graphene-based adsorbents. We also discuss the design of adsorbents for different kinds of antibiotic contaminants to provide guidance to future researchers for choosing the appropriate design methods based on the antibiotic type. These graphene-based adsorbents can also be extended to the adsorption of various pollutants, which is of great significance for environmental protection. The main adsorption mechanism of antibiotics on graphene-based adsorbents in aqueous solutions is expounded. The cyclic structure of graphene determines the interaction between graphene and antibiotics, such as ππ and cation–π interactions. The numerous oxygen-containing functional groups on the surface of graphene oxide (GO) provide more possibilities for the design of graphene composites. Finally, the future development of graphene-based adsorbents for the removal of antibiotics in aqueous solutions is discussed. We recommend the design of highly-efficient, broad-spectrum, and selective adsorbents for high adsorption performance for multiple antibiotic contaminants in the environment. We also address the regeneration and disposal of graphene-based sorbents and promote green, harmless, and resource-based disposal.
  • 加载中
    1. [1]

      Ying, G. G.; He, L. Y.; Ying, A. J.; Zhang, Q. Q.; Liu, Y. S.; Zhao, J. L. Environ. Sci. Technol. 2017, 51 (3), 1072. doi: 10.1021/acs.est.6b06424  doi: 10.1021/acs.est.6b06424

    2. [2]

      Li, Y. J.; Qiao, X. L.; Zhang, Y. N.; Zhou, C. Z.; Xie, H. J.; Chen, J. W. Water Res. 2016, 102, 405. doi: 10.1016/j.watres.2016.06.054  doi: 10.1016/j.watres.2016.06.054

    3. [3]

      Du, H.; Yang, Z.; Tian, Z.; Huang, M.; Yang, W.; Zhang, L.; Li, A. Chem. Eng. J. 2018, 333, 310. doi: 10.1016/j.cej.2017.09.171  doi: 10.1016/j.cej.2017.09.171

    4. [4]

      Park, K.; Kwak, I. S. Chemosphere 2018, 190, 25. doi: 10.1016/j.chemosphere.2017.09.118  doi: 10.1016/j.chemosphere.2017.09.118

    5. [5]

      Yi, Q. Z.; Zhang, Y.; Gao, Y. X.; Tian, Z.; Yang, M. Water Res. 2017, 110, 211. doi: 10.1016/j.watres.2016.12.020  doi: 10.1016/j.watres.2016.12.020

    6. [6]

      Chen, B. W.; Lin, L.; Fang, L.; Yang, Y.; Chen, E. Z.; Yuan, K.; Zou, S. C.; Wang, X. W.; Luan, T. G. Water Res. 2018, 134, 200. doi: 10.1016/j.watres.2018.02.003  doi: 10.1016/j.watres.2018.02.003

    7. [7]

      Li, S.; Huang, Z.; Wang, Y.; Liu, Y. Q.; Luo, R.; Shang, J. G.; Liao, Q. J. H. Chemosphere 2018, 192, 234. doi: 10.1016/j.chemosphere.2017.10.131  doi: 10.1016/j.chemosphere.2017.10.131

    8. [8]

      Wang, S. F.; Li, X.; Liu, Y. G.; Zhang, C.; Tan, X. F.; Zeng, G. M.; Song, B. A.; Jiang, L. H. J. Hazard. Mater. 2018, 342, 177. doi: 10.1016/j.jhazmat.2017.06.071  doi: 10.1016/j.jhazmat.2017.06.071

    9. [9]

      Chen, W. F.; Li, S. R.; Chen, C. H.; Yan, L. F. Adv. Mater. 2011, 23 (47), 5679. doi: 10.1002/adma.201102838  doi: 10.1002/adma.201102838

    10. [10]

      Sun, H. Y.; Xu, Z.; Gao, C. Adv. Mater. 2013, 25 (18), 2554. doi: 10.1002/adma.201204576  doi: 10.1002/adma.201204576

    11. [11]

      Guinea, F.; Katsnelson, M. I.; Geim, A. K. Nat. Phys. 2010, 6 (1), 30. doi: 10.1038/NPHYS1420  doi: 10.1038/NPHYS1420

    12. [12]

      Wu, J. R.; Zhao, H. Y.; Chen, R.; Chuong, P. H.; Hui, X. H.; He, H. J. Chromatogr. B 2016, 1029, 106. doi: 10.1016/j.jchromb.2016.07.018  doi: 10.1016/j.jchromb.2016.07.018

    13. [13]

      Botas, C.; Alvarez, P.; Blanco, P.; Granda, M.; Blanco, C.; Santamaria, R.; Romasanta, L. J.; Verdejo, R.; Lopez-Manchado, M. A.; Menendez, R. Carbon 2013, 65, 156. doi: 10.1016/j.carbon.2013.08.009  doi: 10.1016/j.carbon.2013.08.009

    14. [14]

      Einollahzadeh, H.; Dariani, R. S.; Fazeli, S. M. Solid State Commun. 2016, 229, 1. doi: 10.1016/j.ssc.2015.12.012  doi: 10.1016/j.ssc.2015.12.012

    15. [15]

      Listed, N. Nat. Mater. 2007, 6 (3), 169.  doi: 10.1038/nmat1858

    16. [16]

      Sandonas, L. M.; Sevincli, H.; Gutierrez, R.; Cuniberti, G. Adv. Sci. 2018, 5 (2). doi: 10.1002/advs.201700365  doi: 10.1002/advs.201700365

    17. [17]

      Al-Hamadani, Y. A. J.; Lee, G.; Kim, S.; Park, C. M.; Jang, M.; Her, N.; Han, J.; Kim, D. H.; Yoon, Y. Chemosphere 2018, 205, 719. doi: 10.1016/j.chemosphere.2018.04.129  doi: 10.1016/j.chemosphere.2018.04.129

    18. [18]

      Lee, C.; Wei, X. D.; Kysar, J. W.; Hone, J. Science 2008, 321 (5887), 385. doi: 10.1126/science.1157996  doi: 10.1126/science.1157996

    19. [19]

      Rostamian, R.; Behnejad, H. Ecotox. Environ. Safe. 2018, 147, 117. doi: 10.1016/j.ecoenv.2017.08.019  doi: 10.1016/j.ecoenv.2017.08.019

    20. [20]

      Rostamian, R.; Behnejad, H. Process Saf. Environ. 2016, 102, 20. doi: 10.1016/j.psep.2015.12.011  doi: 10.1016/j.psep.2015.12.011

    21. [21]

      Goswami, S.; Banerjee, P.; Datta, S.; Mukhopadhayay, A.; Das, P. Process Saf. Environ. 2017, 106, 163. doi: 10.1016/j.psep.2017.01.003  doi: 10.1016/j.psep.2017.01.003

    22. [22]

      Alicanoglu, P.; Sponza, D. T. Desalin. Water Treat. 2017, 63, 293. doi: 10.5004/dwt.2017.20176  doi: 10.5004/dwt.2017.20176

    23. [23]

      Marosevic, D.; Kaevska, M.; Jaglic, Z. Ann. Agr. Env. Med. 2017, 24 (2), 338. doi: 10.26444/aaem/74718  doi: 10.26444/aaem/74718

    24. [24]

      Estofan, L. J. F.; Naydin, S.; Gliebus, G. J. Invest. Med. 2018, 6, 1. doi: 10.1177/2324709617752736  doi: 10.1177/2324709617752736

    25. [25]

      Sampaio, J. L. M.; Gales, A. C. Braz. J. Microbiol. 2016, 47, 31. doi: 10.1016/j.bjm.2016.10.002  doi: 10.1016/j.bjm.2016.10.002

    26. [26]

      Pawlowski, A. C.; Stogios, P. J.; Koteva, K.; Skarina, T.; Evdokimova, E.; Savchenko, A.; Wright, G. D. Nat. Commun. 2018, 9, 112. doi: 10.1038/s41467-017-02680-0  doi: 10.1038/s41467-017-02680-0

    27. [27]

      El Khoury, M.; Swain, J.; Sautrey, G.; Zimmermann, L.; Van Der Smissen, P.; Decout, J. L.; Mingeot-Leclercq, M. P. Sci. Rep. 2017, 7, 10697. doi: 10.1038/s41598-017-10543-3  doi: 10.1038/s41598-017-10543-3

    28. [28]

      Sagi, G.; Bezsenyi, A.; Kovacs, K.; Klatyik, S.; Darvas, B.; Szekacs, A.; Mohacsi-Farkas, C.; Takacs, E.; Wojnarovits, L. Sci. Total Environ. 2018, 622, 1009. doi: 10.1016/j.scitotenv.2017.12.065  doi: 10.1016/j.scitotenv.2017.12.065

    29. [29]

      Schafer, B. Chem. Unserer Zeit 2017, 51 (4), 238. doi: 10.1002/ciuz.201780882  doi: 10.1002/ciuz.201780882

    30. [30]

      Gazzola, S.; Fontana, C.; Bassi, D.; Cocconcelli, P. S. Food Microbiol. 2012, 30 (2), 348. doi: 10.1016/j.fm.2011.12.005  doi: 10.1016/j.fm.2011.12.005

    31. [31]

      Monteiro, S. H.; Francisco, J. G.; Campion, T. F.; Pimpinato, R. F.; Andrade, G. C. R. M.; Garcia, F.; Tornisielo, V. L. Aquaculture 2015, 447, 37. doi: 10.1016/j.aquaculture.2015.07.002  doi: 10.1016/j.aquaculture.2015.07.002

    32. [32]

      Badshah, S. L.; Ullah, A. Eur. J. Med. Chem. 2018, 152, 393. doi: 10.1016/j.ejmech.2018.04.059  doi: 10.1016/j.ejmech.2018.04.059

    33. [33]

      Lee, A. J.; Wang, S. Y.; Meredith, H. R.; Zhuang, B. H.; Dai, Z. J.; You, L. C. Proc. Natl. Acad. Sci. U. S. A. 2018, 115 (16), 4069. doi: 10.1073/pnas.1719504115  doi: 10.1073/pnas.1719504115

    34. [34]

      Gravina, G. L.; Mancini, A.; Mattei, C.; Vitale, F.; Marampon, F.; Colapietro, A.; Rossi, G.; Ventura, L.; Vetuschi, A.; Di Cesare, E.; et al. Oncotarget 2017, 8 (18), 29865. doi: 10.18632/oncotarget.16168  doi: 10.18632/oncotarget.16168

    35. [35]

      Kawai, Y.; Mickiewicz, K.; Errington, J. Cell 2018, 172 (5), 1038. doi: 10.1016/j.cell.2018.01.021  doi: 10.1016/j.cell.2018.01.021

    36. [36]

      Butterfield-Cowper, J. M.; Burgner, K. Am. J. Health-Syst. Ph. 2017, 74 (9), 170. doi: 10.2146/ajhp150883  doi: 10.2146/ajhp150883

    37. [37]

      Koch, M.; Willi, J.; Pradere, U.; Hall, J.; Polacek, N. Nucleic Acids Res. 2017, 45 (11), 6717. doi: 10.1093/nar/gkx195  doi: 10.1093/nar/gkx195

    38. [38]

      Shulman, E.; Belakhov, V.; Wei, G.; Kendall, A.; Meyron-Holtz, E. G.; Ben-Shachar, D.; Schacht, J.; Baasov, T. J. Biol. Chem. 2014, 289 (4), 2318. doi: 10.1074/jbc.M113.533588  doi: 10.1074/jbc.M113.533588

    39. [39]

      Kor, S. B.; Choo, Q. C.; Chew, C. H. J. Med. Microbiol. 2013, 62, 412. doi: 10.1099/jmm.0.053645-0  doi: 10.1099/jmm.0.053645-0

    40. [40]

      Marques, S. M.; Enyedy, E. A.; Supuran, C. T.; Krupenko, N. I.; Krupenko, S. A.; Santos, M. A. Bioorgan. Med. Chem. 2010, 18 (14), 5081. doi: 10.1016/j.bmc.2010.05.072  doi: 10.1016/j.bmc.2010.05.072

    41. [41]

      Goto, K.; Imaoka, M.; Goto, M.; Kikuchi, I.; Suzuki, T.; Jindo, T.; Takasaki, W. Toxicol. Lett. 2013, 216 (2), 124. doi: 10.1016/j.toxlet.2012.11.017  doi: 10.1016/j.toxlet.2012.11.017

    42. [42]

      Horiuchi, M.; Kimura, M.; Tokumura, M.; Hasebe, N.; Arai, T.; Abe, K. Toxicology 2006, 222 (1), 114. doi: 10.1016/j.tox.2006.02.004  doi: 10.1016/j.tox.2006.02.004

    43. [43]

      Rutter, W. C.; Burgess, D. S. Pharmacotherapy 2017, 37 (5), 593. doi: 10.1002/phar.1918  doi: 10.1002/phar.1918

    44. [44]

      Jia, S. Y.; Zhang, X. X.; Miao, Y.; Zhao, Y. T.; Ye, L.; Li, B.; Zhang, T. Water Res. 2017, 124, 259. doi: 10.1016/j.watres.2017.07.061  doi: 10.1016/j.watres.2017.07.061

    45. [45]

      Su, H. C.; Liu, S.; Hu, X. J.; Xu, X. R.; Xu, W. J.; Xu, Y.; Li, Z. J.; Wen, G. L.; Liu, Y. S.; Cao, Y. C. Sci. Total Environ. 2017, 607, 357. doi: 10.1016/j.scitotenv.2017.07.040  doi: 10.1016/j.scitotenv.2017.07.040

    46. [46]

      Ji, L. L.; Liu, F. L.; Xu, Z. Y.; Zheng, S. R.; Zhu, D. Q. Environ. Sci. Technol. 2010, 44 (8), 3116. doi: 10.1021/es903716s  doi: 10.1021/es903716s

    47. [47]

      Berendonk, T. U.; Manaia, C. M.; Merlin, C.; Fatta-Kassinos, D.; Cytryn, E.; Walsh, F.; Burgmann, H.; Sorum, H.; Norstrom, M.; Pons, M. N.; et al. Nat. Rev. Microbiol. 2015, 13 (5), 310. doi: 10.1038/nrmicro3439  doi: 10.1038/nrmicro3439

    48. [48]

      Havelkova, B.; Beklova, M.; Kovacova, V.; Hlavkova, D.; Pikula, J. Neuroendocrinol. Lett. 2016, 37 (Suppl. 1), 38.

    49. [49]

      Yin, G. Y.; Hou, L. J.; Liu, M.; Zheng, Y. L.; Li, X. F.; Lin, X. B.; Gao, J.; Jiang, X. F.; Wang, R.; Yu, C. D. Chemosphere 2017, 171, 118. doi: 10.1016/j.chemosphere.2016.12.068  doi: 10.1016/j.chemosphere.2016.12.068

    50. [50]

      Wang, F.; Ma, S.; Si, Y.; Dong, L. F.; Wang, X. L.; Yao, J.; Chen, H. L.; Yi, Z. J.; Yao, W. C.; Xing, B. S. Carbon 2017, 114, 671. doi: 10.1016/j.carbon.2016.12.080  doi: 10.1016/j.carbon.2016.12.080

    51. [51]

      Gao, Y.; Li, Y.; Zhang, L.; Huang, H.; Hu, J. J.; Shah, S. M.; Su, X. G. J. Colloid Interface Sci. 2012, 368, 540. doi: 10.1016/j.jcis.2011.11.015  doi: 10.1016/j.jcis.2011.11.015

    52. [52]

      Lafkioti, M.; Krauss, B.; Lohmann, T.; Zschieschang, U.; Klauk, H.; von Klitzing, K.; Smet, J. H. Nano Lett. 2010, 10 (4), 1149. doi: 10.1021/nl903162a  doi: 10.1021/nl903162a

    53. [53]

      Filip, J.; Andicsova-Eckstein, A.; Vikartovska, A.; Tkac, J. Biosens. Bioelectron. 2017, 89, 384. doi: 10.1016/j.bios.2016.06.006  doi: 10.1016/j.bios.2016.06.006

    54. [54]

      Iqbal, M. Z.; Abdala, A. A.; Mittal, V.; Seifert, S.; Herring, A. M.; Liberatore, M. W. Polymer. 2016, 98, 143. doi: 10.1016/j.polymer.2016.06.021  doi: 10.1016/j.polymer.2016.06.021

    55. [55]

      Luan, V. H.; Tien, H. N.; Hoa, L. T.; Nguyen, T. M. H.; Oh, E. S.; Chung, J.; Kim, E. J.; Choi, W. M.; Kong, B. S.; Hur, S. H. J. Mater. Chem. A 2013, 1 (2), 208. doi: 10.1039/c2ta00444e  doi: 10.1039/c2ta00444e

    56. [56]

      Lei, Y. L.; Chen, F.; Luo, Y. J.; Zhang, L. J. Mater. Sci. 2014, 49 (12), 4236. doi: 10.1007/s10853-014-8118-2  doi: 10.1007/s10853-014-8118-2

    57. [57]

      Nodeh, H. R.; Sereshti, H. RSC Adv. 2016, 6 (92), 89953. doi: 10.1039/c6ra18341g  doi: 10.1039/c6ra18341g

    58. [58]

      Li, M. F.; Liu, Y. G.; Zeng, G. M.; Liu, S. B.; Hu, X. J.; Shu, D.; Jiang, L. H.; Tan, X. F.; Cai, X. X.; Yan, Z. L. J. Colloid Interface Sci. 2017, 485, 269. doi: 10.1016/j.jcis.2016.09.037  doi: 10.1016/j.jcis.2016.09.037

    59. [59]

      Chen, L. W.; Ding, D. H.; Liu, C.; Cai, H.; Qu, Y.; Yang, S. J.; Gao, Y.; Cai, T. M. Chem. Eng. J. 2018, 334, 273. doi: 10.1016/j.cej.2017.10.040  doi: 10.1016/j.cej.2017.10.040

    60. [60]

      Yu, B. W.; Bai, Y. T.; Ming, Z.; Yang, H.; Chen, L. Y.; Hu, X. J.; Feng, S. C.; Yang, S. T. Mater. Chem. Phys. 2017, 198, 283. doi: 10.1016/j.matchemphys.2017.05.042  doi: 10.1016/j.matchemphys.2017.05.042

    61. [61]

      Su, J.; He, X. W.; Chen, L. X.; Zhang, Y. K. Talanta 2018, 180, 54. doi: 10.1016/j.talanta.2017.12.037  doi: 10.1016/j.talanta.2017.12.037

    62. [62]

      Lee, S. K.; Yang, J. W.; Kim, H. H.; Jo, S. B.; Kang, B.; Bong, H.; Lee, H. C.; Lee, G.; Kim, K. S.; Cho, K. ACS Nano 2014, 8 (8), 7968. doi: 10.1021/nn503329s  doi: 10.1021/nn503329s

    63. [63]

      Wang, Y. L.; El-Deen, A. G.; Li, P.; Oh, B. H. L.; Guo, Z. R.; Khin, M. M.; Vikhe, Y. S.; Wang, J.; Hu, R. G.; Boom, R. M.; et al. ACS Nano 2015, 9 (10), 10142. doi: 10.1021/acsnano.5b03763  doi: 10.1021/acsnano.5b03763

    64. [64]

      Liu, Y.; Huang, S. B.; Zhao, X. S.; Zhang, Y. Q. Colloid Surface A 2018, 539, 1. doi: 10.1016/j.colsurfa.2017.11.066  doi: 10.1016/j.colsurfa.2017.11.066

    65. [65]

      Huang, B. Y.; Liu, Y. G.; Li, B.; Liu, S. B.; Zeng, G. M.; Zeng, Z. W.; Wang, X. H.; Ning, Q. M.; Zheng, B. H.; Yang, C. P. Carbohyd. Polym. 2017, 157, 576. doi: 10.1016/j.carbpol.2016.10.025  doi: 10.1016/j.carbpol.2016.10.025

    66. [66]

      Li, C. C.; Du, Z. J.; Zou, W.; Li, H. Q.; Zhang, C. React. Funct. Polym. 2015, 88, 24. doi: 10.1016/j.reactfunctpolym.2015.02.001  doi: 10.1016/j.reactfunctpolym.2015.02.001

    67. [67]

      Oribayo, O.; Feng, X. S.; Rempel, G. L.; Pan, Q. M. Chem. Eng. J. 2017, 323, 191. doi: 10.1016/j.cej.2017.04.054  doi: 10.1016/j.cej.2017.04.054

    68. [68]

      Wang, N.; Wang, Y. F.; Omer, A. M.; Ouyang, X. K. Anal. Bioanal. Chem. 2017, 409 (28), 6643. doi: 10.1007/s00216-017-0619-9  doi: 10.1007/s00216-017-0619-9

    69. [69]

      Tan, F.; Liu, M.; Ren, S. Y. Sci. Rep. 2017, 7, 5735. doi: 10.1038/s41598-017-06303-y  doi: 10.1038/s41598-017-06303-y

    70. [70]

      Ding, Y.; Zhou, Y. F.; Nie, W. Y.; Chen, P. P. Appl. Surf. Sci. 2015, 357, 1606. doi: 10.1016/j.apsusc.2015.10.030  doi: 10.1016/j.apsusc.2015.10.030

    71. [71]

      Zhuang, Y. T.; Zhang, X.; Wang, D. H.; Yu, Y. L.; Wang, J. H. J. Colloid Interface Sci. 2018, 514, 715. doi: 10.1016/j.jcis.2017.12.08.055  doi: 10.1016/j.jcis.2017.12.08.055

    72. [72]

      Lo, C. W.; Zhu, D. F.; Jiang, H. R. Soft Matter 2011, 7 (12), 5604. doi: 10.1039/c1sm00011j  doi: 10.1039/c1sm00011j

    73. [73]

      Brar, V. W.; Jang, M. S.; Sherrott, M.; Lopez, J. J.; Atwater, H. A. Nano Lett. 2013, 13 (6), 2541. doi: 10.1021/nl400601c  doi: 10.1021/nl400601c

    74. [74]

      Chin, J. S.; Gopalan, A. I.; Muthuchamy, N.; Lee, K. P. Polymers 2016, 8 (12). doi: 10.3390/polym8120445  doi: 10.3390/polym8120445

    75. [75]

      Sahraei, R.; Ghaemy, M. Carbohyd. Polym. 2017, 157, 823. doi: 10.1016/j.carbpol.2016.10.059  doi: 10.1016/j.carbpol.2016.10.059

    76. [76]

      Sung, M. R.; Xiao, H.; Decker, E. A.; McClements, D. J. J. Food Eng. 2015, 155, 16. doi: 10.1016/j.jfoodeng.2015.01.007  doi: 10.1016/j.jfoodeng.2015.01.007

    77. [77]

      Zhuang, Y.; Yu, F.; Ma, J.; Chen, J. H. J. Colloid Interface Sci. 2017, 507, 250. doi: 10.1016/j.jcis.2017.07.033  doi: 10.1016/j.jcis.2017.07.033

    78. [78]

      Losurdo, M.; Giangregorio, M. M.; Capezzuto, P.; Bruno, G. Phys. Chem. Chem. Phys. 2011, 13 (46), 20836. doi: 10.1039/c1cp22347j  doi: 10.1039/c1cp22347j

    79. [79]

      Min, B. H.; Kim, D. W.; Kim, K. H.; Choi, H. O.; Jang, S. W.; Jung, H. T. Carbon. 2014, 80, 446. doi: 10.1016/j.carbon.2014.08.084  doi: 10.1016/j.carbon.2014.08.084

    80. [80]

      Sun, Y. R.; Yang, M. X.; Yu, F.; Chen, J. H.; Ma, J. Prog. Chem. 2015, 27 (8), 1133. doi: 10.7536/PC150226  doi: 10.7536/PC150226

    81. [81]

      Garlof, S.; Fukuda, T.; Mecklenburg, M.; Smazna, D.; Mishra, Y. K.; Adelung, R.; Schulte, K.; Fiedler, B. Compos. Sci. Technol. 2016, 134, 226. doi: 10.1016/j.compscitech.2016.08.019  doi: 10.1016/j.compscitech.2016.08.019

    82. [82]

      Yao, Q. F.; Fan, B. T.; Xiong, Y.; Jin, C. D.; Sun, Q. F.; Sheng, C. M. Sci. Rep. 2017, 7, 45914. doi: 10.1038/srep45914  doi: 10.1038/srep45914

    83. [83]

      Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Small. 2011, 7 (22), 3163. doi: 10.1002/smll.201100990  doi: 10.1002/smll.201100990

    84. [84]

      Vickery, J. L.; Patil, A. J.; Mann, S. Adv. Mater. 2009, 21 (21), 2180. doi: 10.1002/adma.200803606  doi: 10.1002/adma.200803606

    85. [85]

      Devi, P.; Saroha, A. K. Bioresource Technol. 2014, 169, 525. doi: 10.1016/j.biortech.2014.07.062  doi: 10.1016/j.biortech.2014.07.062

    86. [86]

      Huang, D. L.; Wang, X.; Zhang, C.; Zeng, G. M.; Peng, Z. W.; Zhou, J.; Cheng, M.; Wang, R. Z.; Hu, Z. X.; Qin, X. Chemosphere 2017, 186, 414. doi: 10.1016/j.chemosphere.2017.07.154  doi: 10.1016/j.chemosphere.2017.07.154

    87. [87]

      Hu, S. B.; Li, L.; Luo, M. Y.; Yun, Y. F.; Chang, C. T. Ultrason. Sonochem. 2017, 38, 446. doi:10.1016/j.ultsonch.2017.03.044  doi: 10.1016/j.ultsonch.2017.03.044

    88. [88]

      Khataee, A.; Gholami, P.; Kayan, B.; Kalderis, D.; Dinpazhoh, L.; Akay, S. Ultrason. Sonochem. 2018, 48, 349. doi: 10.1016/j.ultsonch.2018.05.008  doi: 10.1016/j.ultsonch.2018.05.008

    89. [89]

      Gan, Y. X.; Wei, Y.; Xiong, J. Y.; Cheng, G. Chem. Eng. J. 2018, 349, 1. doi: 10.1016/j.cej.2018.05.051  doi: 10.1016/j.cej.2018.05.051

    90. [90]

      Liu, X. H.; Liu, Y.; Lu, S. Y.; Guo, W.; Xi, B. D. Chem. Eng. J. 2018, 350, 131. doi: 10.1016/j.cej.2018.05.141  doi: 10.1016/j.cej.2018.05.141

    91. [91]

      Amina; Si, X. Y.; Wu, K.; Si, Y. B.; Yousaf, B. Chem. Eng. J. 2018, 353, 80. doi: 10.1016/j.cej.2018.07.078  doi: 10.1016/j.cej.2018.07.078

    92. [92]

      Zhang, X. T.; Shen, J. C.; Zhuo, N.; Tian, Z. Q.; Xu, P. R.; Yang, Z.; Yang, W. B. ACS Appl. Mater. Inter. 2016, 8 (36), 24273. doi: 10.1021/acsami.6b09377  doi: 10.1021/acsami.6b09377

    93. [93]

      Ma, J.; Sun, Y. R.; Yu, F. Roy. Soc. Open Sci. 2017, 4 (11), 170731. doi: 10.1098/rsos.170731  doi: 10.1098/rsos.170731

    94. [94]

      Yang, Y. X.; Hu, X. J.; Zhao, Y. L.; Cui, L. H.; Huang, Z. J.; Long, J. L.; Xu, J. W.; Deng, J. B.; Wu, C. Y.; Li, W. W. J. Colloid Interface Sci. 2017, 495, 68. doi: 10.1016/j.jcis.2017.01.075  doi: 10.1016/j.jcis.2017.01.075

    95. [95]

      Zhuang, Y.; Yu, F.; Ma, J.; Chen, J. H. RSC Adv. 2015, 5 (35), 27964. doi: 10.1039/c4ra12413h  doi: 10.1039/c4ra12413h

    96. [96]

      Tang, Y. L.; Guo, H. G.; Xiao, L.; Yu, S. L.; Gao, N. Y.; Wang, Y. L. Colloid Surface A 2013, 424, 74. doi: 10.1016/j.colsurfa.2013.02.030  doi: 10.1016/j.colsurfa.2013.02.030

    97. [97]

      Moradi, S. E. Chem. Bull. Politehnica Univ. 2015, 60 (74), 2.

    98. [98]

      Priya, B.; Raizada, P.; Singh, N.; Thakur, P.; Singh, P. J. Colloid Interface Sci. 2016, 479, 271. doi: 10.1016/j.jcis.2016.06.067  doi: 10.1016/j.jcis.2016.06.067

    99. [99]

      Wan, Z.; Hu, J.; Wang, J. L. J. Environ. Manage. 2016, 182, 284. doi: 10.1016/j.jenvman.2016.07.088  doi: 10.1016/j.jenvman.2016.07.088

    100. [100]

      Rostamian, R.; Behnejad, H. Environ. Sci. Pollut. R. 2018, 25 (3), 2528. doi: 10.1007/s11356-017-0687-6  doi: 10.1007/s11356-017-0687-6

    101. [101]

      Kerkez-Kuyumcu, O.; Bayazit, S. S.; Salam, M. A. J. Ind. Eng. Chem. 2016, 36, 198. doi: 10.1016/j.jiec.2016.01.040  doi: 10.1016/j.jiec.2016.01.040

    102. [102]

      Yadav, S.; Goel, N.; Kumar, V.; Tikoo, K.; Singhal, S. Environ. Sci. Pollut. R. 2018, 25 (3), 2942. doi: 10.1007/s11356-017-0596-8  doi: 10.1007/s11356-017-0596-8

    103. [103]

      Zhao, G.; Li, X.; Huang, M.; Zhen, Z.; Zhong, Y.; Chen, Q.; Zhao, X.; He, Y.; Hu, R.; Yang, T.; et al. Chem. Soc. Rev. 2017, 46 (15), 4417. doi: 10.1039/c7cs00256d  doi: 10.1039/c7cs00256d

    104. [104]

      Yao, N.; Zhang, X.; Yang, Z.; Yang, W.; Tian, Z.; Zhang, L. ACS Appl. Mater. Interfaces 2018, 10 (34), 29083. doi: 10.1021/acsami.8b07233  doi: 10.1021/acsami.8b07233

    105. [105]

      Li, Z. Q.; Qi, M. Y.; Tu, C. Y.; Wang, W. P.; Chen, J. R.; Wang, A. J. Appl. Surf. Sci. 2017, 425, 765. doi: 10.1016/j.apsusc.2017.07.027  doi: 10.1016/j.apsusc.2017.07.027

    106. [106]

      Wang, J.; Yao, Q. F.; Sheng, C. M.; Jin, C. D.; Sun, Q. F. J. Nanomater. 2017. doi: 10.1155/2017/5150613  doi: 10.1155/2017/5150613

    107. [107]

      Sitko, R.; Zawisza, B.; Malicka, E. Trac-Trend. Anal. Chem. 2013, 51, 33. doi: 10.1016/j.trac.2013.05.011  doi: 10.1016/j.trac.2013.05.011

    108. [108]

      Ma, J.; Li, B.; Zhou, L.; Zhu, Y.; Li, J.; Qiu, Y. Int. J. Environ. Res. Public Health 2018, 15 (7), 1524. doi: 10.3390/ijerph15071524  doi: 10.3390/ijerph15071524

    109. [109]

      Yuan, X. Z.; Wu, Z. B.; Zhong, H.; Wang, H.; Chen, X. H.; Leng, L. J.; Jiang, L. B.; Xiao, Z. H.; Zeng, G. M. Environ. Sci. Pollut. R. 2016, 23 (18), 18657. doi: 10.1007/s11356-016-6892-x  doi: 10.1007/s11356-016-6892-x

    110. [110]

      Li, B. Q.; Yuan, W. H.; Li, L. Acta Phys. -Chim. Sin. 2016, 32 (4), 997.  doi: 10.3866/PKU.WHXB201602182
       

  • 加载中
    1. [1]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    4. [4]

      Jijun Sun Qianlang Wang Qian Chen Quanqin Zhao Shumei Zhai . The Antibiotic Legion’s Manifesto to Human Allies. University Chemistry, 2025, 40(4): 307-321. doi: 10.12461/PKU.DXHX202405206

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    7. [7]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    8. [8]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    9. [9]

      Peiling Li Qing Feng Hongling Yuan Qin Wang . Live Interview Recording about the Penicillin Family. University Chemistry, 2024, 39(9): 122-127. doi: 10.3866/PKU.DXHX202311022

    10. [10]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    11. [11]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    12. [12]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    13. [13]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    14. [14]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    15. [15]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    16. [16]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    17. [17]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    18. [18]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    19. [19]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . Modulating the d-band center of NNU-55(Fe) for enhanced CO2 adsorption and photocatalytic activity. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    20. [20]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

Metrics
  • PDF Downloads(15)
  • Abstract views(762)
  • HTML views(85)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return