Citation: LI Lulu, YAO Lu, DUAN Li. Application of Lithium-Selenium Batteries Using Covalent Organic Framework Composite Cathodes[J]. Acta Physico-Chimica Sinica, ;2019, 35(7): 734-739. doi: 10.3866/PKU.WHXB201806063 shu

Application of Lithium-Selenium Batteries Using Covalent Organic Framework Composite Cathodes

  • Corresponding author: DUAN Li, franklinduan@sjtu.edu.cn
  • Received Date: 28 June 2018
    Revised Date: 7 August 2018
    Accepted Date: 16 August 2018
    Available Online: 29 July 2018

    Fund Project: the National Natural Science Foundation of China 61376003The project was supported by the National Natural Science Foundation of China (61376003)

  • Li-S batteries are considered promising next-generation energy storage systems because they offer high theoretical specific capacity (1675 mAh∙g−1), high energy density (2600 Wh∙kg−1), environmental friendliness, and low cost. However, large-scale commercial applications are hindered by the low electrical conductivity of S, high volume expansion ratio, and high solubility of intermediate polysulfides in organic electrolytes. Li-Se batteries using Se as the cathode material have high discharge rates, good cyclic performance, high electrical conductivities, high output voltages, and high volumetric capacity densities, and therefore, they are potential alternatives to Li-S systems. Recently, covalent organic frameworks (COFs) have emerged as new porous crystalline materials with large specific surface areas, high porosities, low densities, good thermal stabilities, and controllable structures. Therefore, COFs have wide potential applicability in the fields of gas adsorption, heterogeneous catalysis, energy storage, and drug delivery. Based on the above analysis, a simple core-shell multiwalled carbon nanotube (MWCNT)/1, 3, 5-triformylphloroglucinol (Tp)-phenylenediamine (Pa) COF nanocomposite (MWCNT@TpPa-COF) was prepared by growing a TpPa-COF on MWCNTs through a simple solvothermal reaction. The MWCNT@TpPa-COF high-performance cathode material realizes the first application of a COF in Li-Se batteries. The MWCNTs can encapsulate Se, limit the diffusion of polyselenides (Li2Sen, 3 ≤ n ≤ 8), and provide rapid electron conduction and ion transmission. In addition, the π-π interaction between MWCNTs and COFs promotes COF growth and distribution on the MWCNTs, thereby forming core-shell MWCNT@TpPa-COF nanocomposites, which can further increase the loading of Se. Measurements via field-emission scanning electron microscopy, transmission electron microscopy, and Fourier-transform infrared spectroscopy confirmed the successful combination of MWCNTs and COFs. The rich micro- and mesoporous hierarchical structure provides the MWCNT@TpPa-COF nanocomposites with initial specific discharge capacities reaching 463.5 mAh∙g−1 at the current density of 3C (1C = 675 mA∙g−1). Cells utilizing the nanocomposite electrodes maintained 99% Coulombic efficiency, with the average cyclic capacitive loss of 0.14% after 500 cycles. In addition, electrochemical impedance spectroscopy, cyclic voltammetry, and multiple-rate cycling analyses support the excellent electrochemical performance of the proposed cathode material. This work provides a promising new prospect for the future development of rechargeable Li-Se batteries utilizing new COF-based cathode materials.
  • 加载中
    1. [1]

      Fan, S.; Zhang, Y.; Li, S. H.; Lan, T. Y.; Xu, J. L. RSC Adv. 2017, 7, 21281. doi: 10.1039/C6RA28463A  doi: 10.1039/C6RA28463A

    2. [2]

      Su, J.; Wu, X. L.; Lee, J. S.; Kim, J.; Guo, Y. G. J. Mater. Chem. A 2013, 1, 2508. doi: 10.1039/C2TA01254E  doi: 10.1039/C2TA01254E

    3. [3]

      Huang, S. Z.; Cai, Y.; Jin, J.; Liu, J.; Li, Y.; Yu, Y.; Wang, H. E.; Chen, L. H.; Su, B. L. Nano Energy 2015, 12, 833. doi: 0.1016/j.nanoen.2015.01.040  doi: 10.1016/j.nanoen.2015.01.040

    4. [4]

      Li, Z.; Wu, H. B.; Lou, X. W. Energy Environ. Sci. 2016, 9, 3061. doi: 10.1039/C6EE02364A  doi: 10.1039/C6EE02364A

    5. [5]

      Ding, Y. L.; Kopold, P.; Hahn, K.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Funct. Mater. 2016, 26, 1112. doi: 10.1002/adfm.201504294  doi: 10.1002/adfm.201504294

    6. [6]

      Liu, X.; Huang, J. Q.; Zhang, Q.; Mai, L. Q. Adv. Mater. 2017, 29, 1601759. doi: 10.1002/adma.201601759

    7. [7]

      Zhang, J.; Yang, C. P.; Yin, Y. X.; Wan, L. J.; Guo, Y. G. Adv. Mater. 2016, 28, 9539. doi: 0.1002/adma.201602913

    8. [8]

      Yin, Y. X.; Xin, S.; Guo, Y. G.; Wan, L. J. Angew. Chem. Int. Ed. 2013, 52(50), 13186. doi: 10.1002/anie.201304762  doi: 10.1002/anie.201304762

    9. [9]

      Park, S. K.; Lee, J.; Hwang, T.; Piao, Y. Z. J. Mater. Chem. A 2017, 5, 975. doi: 10.1039/C6TA08557A  doi: 10.1039/C6TA08557A

    10. [10]

      Wang, H. Q.; Zhang, W. C.; Liu, H. K.; Guo, Z. P. Angew. Chem. Int. Ed. 2016, 55(12), 3992. doi: 10.1002/anie.201511673  doi: 10.1002/anie.201511673

    11. [11]

      Liu, S.; Yao, L.; Zhang, Q.; Li, L. L.; Hu, N. T.; Wei, L. M.; Wei, H. Acta Phys. -Chim. Sin. 2017, 33(12), 2339.  doi: 10.3866/PKU.WHXB201706021
       

    12. [12]

      Abouimrane, A.; Dambournet, D.; Chapman, K. W.; Chupas, P. J.; Weng, W.; Amine, K. J. Am. Chem. Soc. 2012, 134(10), 4505. doi: 10.1021/ja211766q  doi: 10.1021/ja211766q

    13. [13]

      Ma, J. M.; Sun, C. S.; Lian, J. B.; Zheng, W. J. Cryst. Res. Technol. 2009, 44(4), 391. doi: 10.1002/crat.200800380  doi: 10.1002/crat.200800380

    14. [14]

      Chung, S. H.; Manthiram, A. Chem. Commun. 2014, 50, 4184. doi: 10.1039/C4CC00850B  doi: 10.1039/C4CC00850B

    15. [15]

      Zhang, Z. A.; Zhang, Z. Y.; Zhang, K.; Yang, X.; Li, Q. RSC Adv. 2014, 4, 15489. doi: 10.1039/C4RA00446A  doi: 10.1039/C4RA00446A

    16. [16]

      Zeng, L. C.; Zeng, W. C.; Jiang, Y.; Wei, X.; Li, W. H.; Yang, C. L.; Zhu, Y. W.; Yu, Y. Adv. Energy Mater. 2015, 5(4), 1401377. doi: 10.1002/aenm.201401377  doi: 10.1002/aenm.201401377

    17. [17]

      Liu, L. L.; Hou, Y. Y.; Wu, X. W.; Xiao, S. Y.; Chang, Z.; Yang, Y. Q.; Wu, Y. P. Chem. Commun. 2013, 49, 11515. doi: 10.1039/C3CC46943C  doi: 10.1039/C3CC46943C

    18. [18]

      Sun, F. G.; Cheng, H. Y.; Chen, J. Z.; Zheng, N.; Li, Y. S.; Shi, J. L. ACS Nano 2016, 10(9), 8289. doi: 10.1021/acsnano.6b02315  doi: 10.1021/acsnano.6b02315

    19. [19]

      Yang, C. P.; Xin, S.; Yin, Y. X.; Ye, H.; Zhang, J.; Guo, Y. G. Angew. Chem. Int. Ed. 2013, 52(32), 8363. doi: 10.1002/anie.201303147  doi: 10.1002/anie.201303147

    20. [20]

      Lee, J. T.; Kim, H.; Oschatz, M.; Lee, D. C.; Wu, F.; Lin, H. T.; Zdyrko, B.; Cho, W. I.; Kaskel, S.; Yushin, G. Adv. Energy Mater. 2015, 5(1), 140098. doi: 10.1002/aenm.201400981  doi: 10.1002/aenm.201400981

    21. [21]

      Qu, Y. H.; Zhang, Z. A.; Jiang, S. F.; Wang, X. W.; Lai, Y. Q.; Liu, Y. X.; Li, J. J. Mater. Chem. A 2014, 2, 12255. doi: 10.1039/C4TA02563F  doi: 10.1039/C4TA02563F

    22. [22]

      He, J. R.; Lv, W. Q.; Chen, Y. F.; Xiong, J.; Wen, K. C.; Xu, C.; Zhang, W. L.; Li, Y. R.; Qin, W.; He, W. D. J. Power Sources 2017, 363, 103. doi: 10.1016/j.jpowsour.2017.07.065  doi: 10.1016/j.jpowsour.2017.07.065

    23. [23]

      Balakumar, K.; Kalaiselvi, N. Carbon 2017, 112, 79. doi: 10.1016/j.carbon.2016.10.097  doi: 10.1016/j.carbon.2016.10.097

    24. [24]

      Cai, Q. F.; Li, Y. Y.; Wang, L.; Li, Q. W.; Xu, J.; Gao, B.; Zhang, X. M.; Huo, K. F.; Chu, P. K. Nano Energy 2017, 32, 1. doi: 10.1016/j.nanoen.2016.12.010  doi: 10.1016/j.nanoen.2016.12.010

    25. [25]

      Han, Y.; Hu, N. T.; Liu, S.; Hou, Z. Y.; Liu, J. Q.; Hua, X. L.; Yang, Z.; Wei, L. M.; Wang, L.; Wei, H. Nanotechnology 2017, 28(33), 33LT01. doi: 10.1088/1361-6528/aa7bb6  doi: 10.1088/1361-6528/aa7bb6

    26. [26]

      Sun, Q.; Aguila, B.; Perman, J.; Earl, L. D.; Abney, C. W.; Cheng, Y. C.; Wei, H.; Nguyen, N.; Wojtas, L.; Ma, S. Q. J. Am. Chem. Soc. 2017, 139(7), 2786. doi: 10.1021/jacs.6b12885  doi: 10.1021/jacs.6b12885

    27. [27]

      Li, L. L.; Liu, S.; Zhang, Q.; Hu, N. T.; Wei, L. M.; Yang, Z.; Wei, H. Acta Phys.-Chim. Sin. 2017, 33(10), 1960.  doi: 10.3866/PKU.WHXB201705191
       

    28. [28]

      Zhang, X.; Wang, Z.; Yao, L.; Mai, Y. Y.; Liu, J. Q.; Hua, X. L.; Wei, H. Mater. Lett. 2018, 213, 143. doi: 10.1016/j.matlet.2017.11.002  doi: 10.1016/j.matlet.2017.11.002

    29. [29]

      Fang, R. P.; Zhou, G. M.; Pei, S. F.; Li, F.; Cheng, H. M. Chem. Commun. 2015, 51(17), 3667. doi: 10.1039/C5CC00089K  doi: 10.1039/C5CC00089K

    30. [30]

      Liu, Y. X.; Si, L.; Zhou, X. S.; Liu, X.; Xu, Y.; Bao, J. C.; Dai, Z. H. J. Mater. Chem. A 2014, 2(42), 17735. doi: 10.1039/C4TA03141E  doi: 10.1039/C4TA03141E

    31. [31]

      Hong, Y. J.; Kang, Y. C. Carbon 2017, 111, 198. doi: 10.1016/j.carbon.2016.09.069  doi: 10.1016/j.carbon.2016.09.069

    32. [32]

      Chong, J. H.; Sauer, M.; Patrick, B. O.; MacLachlan, M. J. Org. Lett. 2003, 5(21), 3823. doi: 10.1021/ol0352714  doi: 10.1021/ol0352714

    33. [33]

      Li, D. Preparation and Electrochemical Performance of Mesoporous Carbon/Sulfur Composite Cathode Materials. M. S. Dissertation, Dalian University of Technology, Dalian, 2013.

    34. [34]

      Huang, D. K.; Li, S. H.; Luo, Y. P.; Xiao, X.; Gao, L.; Wang, M. K.; Shen, Y. Electrochim. Acta. 2016, 190, 258. doi: 10.1016/j.electacta.2015.12.187  doi: 10.1016/j.electacta.2015.12.187

    35. [35]

      Chen, C.; Zhao, C. H.; Hu, Z. B.; Liu, K. Y. Funct. Mater. Lett. 2017, 10(2), 1650074. doi: 10.1142/S1793604716500740  doi: 10.1142/S1793604716500740

    36. [36]

      Kalimuthu, B.; Nallathamby, K. ACS Appl. Mater. Inter. 2017, 9(32), 26756. doi: 10.1021/acsami.7b05103  doi: 10.1021/acsami.7b05103

    37. [37]

      Youn, H. C.; Jegal, J. P.; Park, S. H.; Kim, H. K.; Park, H. S.; Roh, K. C.; Kimet, K. B. ACS Nano 2014, 8(3), 2279. doi: 10.1021/nn405633p  doi: 10.1021/nn405633p

    38. [38]

      Zhang, H.; Yu, F. Q.; Kang, W. P.; Shen, Q. Carbon 2015, 95, 354. doi: 10.1016/j.carbon.2015.08.050  doi: 10.1016/j.carbon.2015.08.050

    39. [39]

      Liu, T.; Zhang, Y.; Hou, J. K.; Lu, S. Y.; Jiang, J.; Xu, M. W. RSC Adv. 2015, 5, 84038. doi: 10.1039/C5RA14979G  doi: 10.1039/C5RA14979G

    40. [40]

      Zhang, J. J.; Fan, L.; Zhu, Y. C.; Xu, Y. H.; Liang, J. W.; Qian, Y. T. Nanoscale 2014, 6, 12952. doi: 10.1039/C4NR03705G  doi: 10.1039/C4NR03705G

    41. [41]

      Sun, K. L.; Zhao, H. B.; Zhang, S. Q.; Yao, J.; Xu, J. Q. Ionics 2015, 21(9), 2477. doi: 10.1007/s11581-015-1451-x  doi: 10.1007/s11581-015-1451-x

    42. [42]

      Cui, Y. J.; Abouimrane, A.; Lu, J.; Bolin, T.; Ren, Y.; Weng, W.; Sun, C. J.; Maroni, V. A.; Heald, S. M.; Amine, K. J. Am. Chem. Soc. 2013, 135(21), 8047. doi: 10.1021/ja402597g  doi: 10.1021/ja402597g

    43. [43]

      Deng, Z. F.; Zhang, Z. A.; Lai, Y. Q.; Liu, J.; Li, J.; Liu, Y. X. J. Electrochem. Soc. 2013, 160(4), A553. doi: 10.1149/2.026304jes  doi: 10.1149/2.026304jes

    44. [44]

      Choi, H. S.; Oh, J. Y.; Park, C. R. RSC Adv. 2014, 4, 3684. doi: 10.1039/C3RA45187A  doi: 10.1039/C3RA45187A

    45. [45]

      Peng, X.; Wang, L.; Zhang, X. M.; Gao, B.; Fu, J. J.; Xiao, S.; Huo, K. F.; Chu, P. K. J. Power Sources 2015, 288, 214. doi: 10.1016/j.jpowsour.2015.04.124  doi: 10.1016/j.jpowsour.2015.04.124

  • 加载中
    1. [1]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    2. [2]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    3. [3]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    4. [4]

      Fan Wu Wenchang Tian Jin Liu Qiuting Zhang YanHui Zhong Zian Lin . Core-Shell Structured Covalent Organic Framework-Coated Silica Microspheres as Mixed-Mode Stationary Phase for High Performance Liquid Chromatography. University Chemistry, 2024, 39(11): 319-326. doi: 10.12461/PKU.DXHX202403031

    5. [5]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    6. [6]

      Qiuting Zhang Fan Wu Jin Liu Zian Lin . Chromatographic Stationary Phase and Chiral Separation Using Frame Materials. University Chemistry, 2025, 40(4): 291-298. doi: 10.12461/PKU.DXHX202405174

    7. [7]

      Yueshuai Xu Wei Liu Xudong Chen Zhikun Zheng . 水相中制备共价有机框架单晶的实验教学设计. University Chemistry, 2025, 40(6): 256-265. doi: 10.12461/PKU.DXHX202408045

    8. [8]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    9. [9]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    10. [10]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    11. [11]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    12. [12]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    13. [13]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    14. [14]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

    15. [15]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    16. [16]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    17. [17]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    18. [18]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    19. [19]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    20. [20]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

Metrics
  • PDF Downloads(18)
  • Abstract views(901)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return