Citation: TAN Miao, ZHANG Lei, LIANG Wanzhen. Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX2) and Effect of Strains[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 385-393. doi: 10.3866/PKU.WHXB201805291 shu

Theoretical Study on Intrinsic Structures and Properties of vdW Heterostructures of Transition Metal Dichalcogenides (WX2) and Effect of Strains

  • Corresponding author: LIANG Wanzhen, liangwz@xmu.edu.cn
  • Received Date: 9 April 2018
    Revised Date: 14 May 2018
    Accepted Date: 25 May 2018
    Available Online: 29 April 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21573177)the National Natural Science Foundation of China 21573177

  • Two-dimensional transition metal dichalcogenides (TMDs) possess the potential to be widely applied in optoelectronic devices, sensors, photocatalysis, and many other fields because of their intrinsic physical, chemical, and mechanical properties. Generally, the van der Waals (vdW) heterostructures fabricated from these TMDs exhibit excellent electronic properties. However, the spectral responses of most vdW heterostructures are limited by the inherent band gaps; it is thus essential to tune the band gaps for specific applications. In this paper, we performed a first-principles theoretical study on the structures and properties of WX2 (X = S, Se, Te), as well as the vdW heterostructures WS2/WSe2, WS2/WTe2, and WSe2/WTe2. The impacts of the number of layers on the properties of WX2 and the strain on the band gaps of vdW heterostructures were demonstrated. We found that every monolayer WX2 (X = S, Se, Te) is a direct gap semiconductor, and as the number of layers increases, their band gaps decrease and they become indirect bandgap semiconductors. The spin-orbit coupling (SOC) effect on their band structures is significant and can decrease the band gap by approximately 300 meV compared with those that do no incorporate SOC effects. The properties of WX2 can be accurately described by the HSE06 + SOC approach. WS2/WSe2, WS2/WTe2, and WSe2/WTe2 heterostructures are direct gap semiconductors with band gaps of 1.10, 0.32, and 0.61 eV, respectively. These three heterostructures exhibit type-II band alignments, which facilitate photo-induced electron-hole separation. In addition, they have quite small electron and hole effective masses, indicating that the separated electrons and holes can move very quickly to reduce the recombination rate of electrons and holes. There is an explicit red-shift of the optical absorption spectra of the three heterostructures compared with those of the monolayer components, and the most obvious redshift occurs in WSe2/WTe2. Both uniaxial and biaxial strains can alter the band gaps of these vdW heterostructures. Once the strain exceeds 4%, a transition from semiconductor to metal characteristics occurs. This work provides a way to tune the electronic properties and band gaps of vdW heterostructures for incorporation in high-performance optoelectronic devices.
  • 加载中
    1. [1]

      Yin, Z.; Li, H.; Li, H.; Jiang, L.; Shi, Y.; Sun, Y.; Lu, G.; Zhang, Q.; Chen, X.; Zhang, H. ACS Nano 2012, 6, 74. doi: 10.1021/nn2024557  doi: 10.1021/nn2024557

    2. [2]

      Lu, Q.; Yu, Y.; Ma, Q.; Chen, B.; Zhang, H. Adv. Mater. 2016, 28, 1917. doi: 10.1002/adma.201503270  doi: 10.1002/adma.201503270

    3. [3]

      Arul, N. S.; Han, J. I. Mater. Lett. 2016, 181, 345. doi: 10.1016/j.matlet.2016.06.065  doi: 10.1016/j.matlet.2016.06.065

    4. [4]

      Sun, Z.; Martinez, A.; Wang, F. Nat. Photonics 2016, 10, 227. doi: 10.1038/nphoton.2016.15  doi: 10.1038/nphoton.2016.15

    5. [5]

      Xia, F.; Wang, H.; Xiao, D.; Dubey, M. Nat. Photonics 2014, 8, 899. doi: 10.1038/nphoton.2014.271  doi: 10.1038/nphoton.2014.271

    6. [6]

      Gupta, A.; Sakthivel, T.; Seal, S. Prog. Mater. Sci. 2015, 73, 44. doi: 10.1016/j.pmatsci.2015.02.002  doi: 10.1016/j.pmatsci.2015.02.002

    7. [7]

      Wang, Q. H.; Kalantar-Zadeh, K.; Kis, A.; Coleman, J. N.; Strano, M. S. Nat Nanotechnol. 2012, 7, 699. doi: 10.1038/nnano.2012.193  doi: 10.1038/nnano.2012.193

    8. [8]

      Bhimanapati, G. R.; Lin, Z.; Meunier, V.; Jung, Y.; Cha, J.; Das, S.; Xiao, D.; Son, Y.; Strano, M. S.; Cooper, V.; et al. ACS Nano 2015, 9, 11509. doi: 10.1021/acsnano.5b05556  doi: 10.1021/acsnano.5b05556

    9. [9]

      Huo, N.; Kang, J.; Wei, Z.; Li, S. S.; Li, J.; Wei, S. H. Adv. Funct. Mater. 2014, 24, 7025. doi: 10.1002/adfm.201401504  doi: 10.1002/adfm.201401504

    10. [10]

      Choudhary, N.; Park, J.; Hwang, J. Y.; Chung, H. S.; Dumas, K. H.; Khondaker, S. I.; Choi, W.; Jung, Y. Sci. Rep. 2016, 6, 25456. doi: 10.1038/srep25456  doi: 10.1038/srep25456

    11. [11]

      Yu, W. J.; Liu, Y.; Zhou, H.; Yin, A.; Li, Z.; Huang, Y.; Duan, X. Nat. Nanotechnol. 2013, 8, 952. doi: 10.1038/nnano.2013.219  doi: 10.1038/nnano.2013.219

    12. [12]

      Ceballos, F.; Bellus, M. Z.; Chiu, H. Y.; Zhao, H. ACS Nano 2014, 8, 12717. doi: 10.1021/nn505736z  doi: 10.1021/nn505736z

    13. [13]

      Huang, C.; Wu, S.; Sanchez, A. M.; Peters, J. J. P.; Beanland, R.; Ross, J. S.; Rivera, P.; Yao, W.; Cobden, D. H.; Xu, X. Nat. Mater. 2014, 13, 1096. doi: 10.1038/nmat4064  doi: 10.1038/nmat4064

    14. [14]

      Zhang, K.; Zhang, T.; Cheng, G.; Li, T.; Wang, S.; Wei, W.; Zhou, X.; Yu, W.; Sun, Y.; Wang, P.; et al. ACS Nano 2016, 10, 3852. doi: 10.1021/acsnano.6b00980  doi: 10.1021/acsnano.6b00980

    15. [15]

      Zhang, W.; Wang, Q.; Chen, Y.; Wang, Z.; Andrew, T. S. W. 2D Mater. 2016, 3, 022001. doi: 10.1088/2053-1583/3/2/022001  doi: 10.1088/2053-1583/3/2/022001

    16. [16]

      Britnell, L.; Ribeiro, R. M.; Eckmann, A.; Jalil, R.; Belle, B. D.; Mishchenko, A.; Kim, Y. J.; Gorbachev, R. V.; Georgiou, T.; Morozov, S. V.; et al. Science 2013, 340, 1311. doi: 10.1126/science.1235547  doi: 10.1126/science.1235547

    17. [17]

      Chen, Y.; Wang, X.; Wu, G.; Wang, Z.; Fang, H.; Lin, T.; Sun, S.; Shen, H.; Hu, W.; Wang, J.; et al. Small 2018, 14, 1703293. doi: 10.1002/smll.201703293  doi: 10.1002/smll.201703293

    18. [18]

      Mak, K. F.; Shan, J. Nat. Photonics 2016, 10, 216. doi: 10.1038/nphoton.2015.282  doi: 10.1038/nphoton.2015.282

    19. [19]

      Chen, Y.; Xi, J.; Dumcenco, D. O.; Liu, Z.; Suenaga, K.; Wang, D.; Shuai, Z.; Huang, Y. S.; Xie, L. ACS Nano 2013, 7, 4610. doi: 10.1021/nn401420h  doi: 10.1021/nn401420h

    20. [20]

      Johari, P.; Shenoy, V. B. ACS Nano 2012, 6, 5449. doi: 10.1021/nn301320r  doi: 10.1021/nn301320r

    21. [21]

      Kang, J.; Li, J.; Li, S. S.; Xia, J. B.; Wang, L. W. Nano Lett. 2013, 13, 5485. doi: 10.1021/nl4030648  doi: 10.1021/nl4030648

    22. [22]

      Rathi, S.; Lee, I.; Lim, D.; Wang, J.; Ochiai, Y.; Aoki, N.; Watanabe, K.; Taniguchi, T.; Lee, G. H.; Yu, Y. J.; et al. Nano Lett. 2015, 15, 5017. doi: 10.1021/acs.nanolett.5b01030  doi: 10.1021/acs.nanolett.5b01030

    23. [23]

      Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; et al. Nat. Mater. 2014, 13, 1135. doi: 10.1038/nmat4091  doi: 10.1038/nmat4091

    24. [24]

      Zeng, Q.; Wang, H.; Fu, W.; Gong, Y.; Zhou, W.; Ajayan, P. M.; Lou, J.; Liu, Z. Small 2014, 11, 1868. doi: 10.1002/smll.201402380  doi: 10.1002/smll.201402380

    25. [25]

      Kou, L.; Frauenheim, T.; Chen, C. J. Phys. Chem. Lett. 2013, 4, 1730. doi: 10.1021/jz400668d  doi: 10.1021/jz400668d

    26. [26]

      Zhang, C.; Chuu, C. P.; Ren, X.; Li, M. Y.; Li, L. J.; Jin, C.; Chou, M. Y.; Shih, C. K. Sci. Adv. 2017, 3, 1. doi: 10.1126/sciadv.1601459  doi: 10.1126/sciadv.1601459

    27. [27]

      Lu, N.; Guo, H.; Li, L.; Dai, J.; Wang, L.; Mei, W. N.; Wu, X.; Zeng, X. C. Nanoscale 2014, 6, 2879. doi: 10.1039/C3NR06072A  doi: 10.1039/C3NR06072A

    28. [28]

      Zhang, C.; Li, M. Y.; Tersoff, J.; Han, Y.; Su, Y.; Li, L. J.; Muller, D. A.; Shih, C. K. Nat. Nano 2018, 13, 152. doi: 10.1038/s41565-017-0022-x  doi: 10.1038/s41565-017-0022-x

    29. [29]

      Seifert, G.; Terrones, H.; Terrones, M.; Jungnickel, G.; Frauenheim, T. Solid State Commun. 2000, 114, 245. doi: 10.1016/S0038-1098(00)00047-8  doi: 10.1016/S0038-1098(00)00047-8

    30. [30]

      Elías, A. L.; Perea-López, N.; Castro-Beltrán, A.; Berkdemir, A.; Lv, R.; Feng, S. L.; Aaron, D.; Hayashi, T; Kim, Y. A.; Endo, M.; et al. ACS Nano 2013, 7, 5235. doi: 10.1021/nn400971k  doi: 10.1021/nn400971k

    31. [31]

      Liu, L.; Kumar, S. B.; Ouyang, Y.; Guo, J. IEEE Trans. Elec. Dev. 2011, 58, 3042. doi: 10.1109/TED.2011.2159221  doi: 10.1109/TED.2011.2159221

    32. [32]

      Zhu, Z. Y.; Cheng, Y. C.; Schwingenschlögl, U. Phys. Rev. B 2011, 84, 15. doi: 10.1103/PhysRevB.84.153402  doi: 10.1103/PhysRevB.84.153402

    33. [33]

      Xiao, D.; Liu, G. B.; Feng, W.; Xu, X.; Yao, W. Phys. Rev. Lett. 2012, 108, 196802. doi: 10.1103/PhysRevLett.108.196802  doi: 10.1103/PhysRevLett.108.196802

    34. [34]

      Ruppert, C.; Chernikov, A.; Hill, H. M.; Rigosi, A. F.; Heinz, T. F. Nano Lett. 2017, 17, 644. doi: 10.1021/acs.nanolett.6b03513  doi: 10.1021/acs.nanolett.6b03513

    35. [35]

      Horri, A.; Faez, R.; Pourfath, M.; Darvish, G. J. Appl. Phys. 2017, 121, 214503. doi: 10.1063/1.4984145  doi: 10.1063/1.4984145

    36. [36]

      Jeong, H. Y.; Jin, Y.; Yun, S. J.; Zhao, J.; Baik, J.; Keum, D. H.; Lee, H. S.; Lee, Y. H. Adv. Mater. 2017, 29, 1. doi: 10.1063/1.49841451  doi: 10.1063/1.49841451

    37. [37]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060  doi: 10.1063/1.1564060

    38. [38]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    39. [39]

      Jariwala, D.; Howell, S. L.; Chen, K. S.; Kang, J.; Sangwan, V. K.; Filippone, S. A.; Turrisi, R.; Marks, T. J.; Lauhon, L. J.; Hersam, M. C. Nano Lett. 2016, 16, 497. doi: 10.1021/acs.nanolett.5b04141  doi: 10.1021/acs.nanolett.5b04141

    40. [40]

      Ding, Y.; Wang, Y.; Ni, J.; Shi, L.; Shi, S.; Tang, W. Phys. B: Condens. Matter 2011, 406, 2254. doi: 10.1016/j.physb.2011.03.044  doi: 10.1016/j.physb.2011.03.044

  • 加载中
    1. [1]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    4. [4]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    5. [5]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    6. [6]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    7. [7]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    8. [8]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    9. [9]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    10. [10]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    11. [11]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    12. [12]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    13. [13]

      Ziyang YinLingbin XieWeinan YinTing ZhiKang ChenJunan PanYingbo ZhangJingwen LiLonglu Wang . Advanced development of grain boundaries in TMDs from fundamentals to hydrogen evolution application. Chinese Chemical Letters, 2024, 35(5): 108628-. doi: 10.1016/j.cclet.2023.108628

    14. [14]

      Gu GongMengzhu LiNing SunTing ZhiYuhao HeJunan PanYuntao CaiLonglu Wang . Versatile oxidized variants derived from TMDs by various oxidation strategies and their applications. Chinese Chemical Letters, 2024, 35(6): 108705-. doi: 10.1016/j.cclet.2023.108705

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    17. [17]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    18. [18]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    19. [19]

      Junan PanXinyi LiuHuachao JiYanwei ZhuYanling ZhuangKang ChenNing SunYongqi LiuYunchao LeiKun WangBao ZangLonglu Wang . The strategies to improve TMDs represented by MoS2 electrocatalytic oxygen evolution reaction. Chinese Chemical Letters, 2024, 35(11): 109515-. doi: 10.1016/j.cclet.2024.109515

    20. [20]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

Metrics
  • PDF Downloads(37)
  • Abstract views(1995)
  • HTML views(506)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return