Citation: HUANG Jingjing, CAI Jinmeng, MA Kui, DING Tong, TIAN Ye, ZHANG Jing, LI Xingang. Ga2O3-Modified Cu/SiO2 Catalysts with Low CO Selectivity for Catalytic Steam Reforming[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 431-441. doi: 10.3866/PKU.WHXB201805211 shu

Ga2O3-Modified Cu/SiO2 Catalysts with Low CO Selectivity for Catalytic Steam Reforming

  • Corresponding author: LI Xingang, xingang_li@tju.edu.cn
  • Received Date: 26 March 2018
    Revised Date: 12 May 2018
    Accepted Date: 17 May 2018
    Available Online: 21 April 2018

    Fund Project: the National Natural Science Foundation of China 21476159the National Natural Science Foundation of China 21476160the Natural Science Foundation of Tianjin, China 15JCZDJC37400The project was supported by the National Natural Science Foundation of China (21476159, 21476160) and the Natural Science Foundation of Tianjin, China (15JCZDJC37400, 15JCYBJC23000)the Natural Science Foundation of Tianjin, China 15JCYBJC23000

  • Dimethyl ether (DME) is considered a promising energy source and clean fuel for the next generation, with its high hydrogen content, and non-toxicity compared with methanol. In addition, it is easy to store and transport. DME steam reforming (SR) has received considerable attention for its applicability in the production of hydrogen for fuel cell applications. Generally, DME SR consists of two steps: DME hydrolysis and methanol SR. DME hydrolysis often occurs on an acidic catalyst, such as γ-Al2O3. Methanol SR in Cu-based catalysts requires both Cu0 and Cu+ as the active sites; moreover, the relative ratios of Cu0 and Cu+ can influence the catalytic performance. In addition, the byproduct of CO also commonly exists in DME SR, and a small amount of CO can poison Pt electrodes of fuel cells. Therefore, it is necessary to reduce the concentration of the generated CO in DME SR. Herein, using an ammonia-evaporation method, we synthesized a Cu/SiO2 catalyst, which can simultaneously generate the dual copper species of Cu0 and Cu+ by reduction. After modification with Ga2O3, the xGa-Cu/SiO2 catalysts show much improved catalytic activity and decreased CO selectivity. The Cu/SiO2 catalyst shows a DME conversion of 90.7% and CO selectivity of 11.5% at 380 ℃. The 5Ga-Cu/SiO2 catalyst, with a loading amount of Ga2O3 of 5% (w, based on the weight of Cu), shows the best performance, with a DME conversion of 99.8% and CO selectivity of 4.8% under the same conditions. The measurement of apparent activation energies shows that the addition of Ga2O3 cannot change the reaction path. By multiple characterization methods, we demonstrated that the improved performance can be ascribed to the following two aspects. First, our characterization results show that the loaded Ga2O3 is highly dispersed on the Cu/SiO2 catalyst, which can increase the interaction between Ga and Cu species. This can not only improve the dispersion of copper species (Cu0 and Cu+) on the catalysts, but can also adjust the ratios of Cu+/(Cu0 + Cu+). The H2 production rate shows a typical volcano curve owing to the ratio of Cu+/(Cu0 + Cu+), and reaches a maximum of 5.02 mol·g-1·h-1 at Cu+/(Cu0 + Cu+) = 0.5 for the 5Ga-Cu/SiO2 catalyst. We conclude that the interaction between Ga and Cu species and the synergistic effect between Cu0 and Cu+ result in the promoted catalytic activity for DME SR. Second, by using a temperature-programmed surface reaction (TPSR), we showed that the addition of Ga2O3 can efficiently promote the water–gas shift reaction, thereby reducing the CO selectivity in DME SR. Thus, Ga2O3 suppresses the generation of CO, leading to the low CO selectivity and high CO2 selectivity. In summary, the Ga2O3-modified Cu/SiO2 catalyst yields reformates with low CO selectivity and high catalytic activity for DME SR. Our work provides a novel approach to designing a highly efficient Cu-based catalyst for catalytic SR systems.
  • 加载中
    1. [1]

      Yao, S.; Zhang, X.; Zhou, W.; Gao, R.; Xu, W.; Ye, Y.; Lin, L.; Wen, X.; Liu, P.; Chen, B.; et al. Science 2017, 357, 389. doi: 10.1126/science.aah4321  doi: 10.1126/science.aah4321

    2. [2]

      Yue, H.; Ma, X.; Gong, J. Acc. Chem. Res. 2014, 47, 1483. doi: 10.1021/ar4002697  doi: 10.1021/ar4002697

    3. [3]

      He, T.; Pachfule, P.; Wu, H.; Xu, Q.; Chen, P. Nat. Rev. Mater. 2016, 1, 16059. doi: 10.1038/natrevmats.2016.59  doi: 10.1038/natrevmats.2016.59

    4. [4]

      Mathew, T.; Yamada, Y.; Ueda, A.; Shioyama, H.; Kobayashi, T. Appl. Catal. A-Gen. 2005, 286, 11. doi: 10.1016/j.apcata.2005.02.030  doi: 10.1016/j.apcata.2005.02.030

    5. [5]

      Turco, M.; Bagnasco, G.; Costantino, U.; Marmottini, F.; Montanari, T.; Ramis, G.; Busca, G. J. Catal. 2004, 228, 43. doi: 10.1016/j.jcat.2004.08.026  doi: 10.1016/j.jcat.2004.08.026

    6. [6]

      Wang, X. L.; Pan, X. M.; Lin, R.; Kou, S. Y.; Zou, W. B.; Ma, J. X. Acta Phys. -Chim. Sin. 2010, 26, 1296.  doi: 10.3866/PKU.WHXB20100322

    7. [7]

      Park, S.; Kim, H.; Choi, B. J. Ind. Eng. Chem. 2010, 16, 734. doi: 10.1016/j.jiec.2010.07.010  doi: 10.1016/j.jiec.2010.07.010

    8. [8]

      Mihai, O.; Fathali, A.; Auvray, X.; Olsson, L. Appl. Catal. B-Environ. 2014, 160, 480. doi: 10.1016/j.apcatb.2014.05.048  doi: 10.1016/j.apcatb.2014.05.048

    9. [9]

      Yoshida, H.; Iwasa, N.; Akamatsu, H.; Arai, M. Int. J. Hydrog. Energy 2015, 40, 5624. doi: 10.1016/j.ijhydene.2015.02.111  doi: 10.1016/j.ijhydene.2015.02.111

    10. [10]

      Erena, J.; Vicente, J.; Aguayo, A. T.; Gayubo, A. G.; Olazar, M.; Bilbao, J. Int. J. Hydrog. Energy 2013, 38, 10019. doi: 10.1016/j.ijhydene.2013.05.134  doi: 10.1016/j.ijhydene.2013.05.134

    11. [11]

      Takeishi, K. Appl. Catal. A-Gen. 2004, 260, 111. doi: 10.1016/j.apcata.2003.10.006  doi: 10.1016/j.apcata.2003.10.006

    12. [12]

      Vicente, J.; Gayubo, A. G.; Erena, J.; Aguayo, A. T.; Olazar, M.; Bilbao, J. Appl. Catal. B-Environ. 2013, 130, 73. doi: 10.1016/j.apcatb.2012.10.019  doi: 10.1016/j.apcatb.2012.10.019

    13. [13]

      Fukunaga, T.; Ryumon, N.; Shimazu, S. Appl. Catal. A-Gen. 2008, 348, 193. doi: 10.1016/j.apcata.2008.06.031  doi: 10.1016/j.apcata.2008.06.031

    14. [14]

      Faungnawakij, K.; Kikuchi, R.; Eguchi, K. J. Power Sources 2007, 164, 73. doi: 10.1016/j.jpowsour.2006.09.072  doi: 10.1016/j.jpowsour.2006.09.072

    15. [15]

      Wang, X. L.; Ma, K.; Guo, L. H.; Ding, T.; Cheng, Q. P.; Tian, Y.; Li, X. G. Acta Phys. -Chim. Sin. 2017, 33, 1699.  doi: 10.3866/PKU.WHXB201704263

    16. [16]

      Lv, J.; Zhou, S.; Ma, K.; Meng, M.; Tian, Y. Chin. J. Catal. 2015, 36, 1295. doi: 10.1016/S1872-2067(15)60883-X  doi: 10.1016/S1872-2067(15)60883-X

    17. [17]

      Wang, X. L.; Pan, X. M.; Lin, R.; Ren, K. W.; Kou, S. Y.; Ma, J. X. Acta Phys. -Chim. Sin. 2009, 25, 1097.  doi: 10.3866/PKU.WHXB20080608

    18. [18]

      Badmaev, S. D.; Volkova, G. G.; Belyaev, V. D.; Sobyanin, V. A. React. Kinet. Catal. Lett. 2007, 90, 205. doi: 10.1007/s11144-007-5082-8  doi: 10.1007/s11144-007-5082-8

    19. [19]

      Yan, C.; Hai, H.; Guo, C.; Li, W.; Huang, S.; Chen, H. Int. J. Hydrog. Energy 2014, 39, 10409. doi: 10.1016/j.ijhydene.2014.04.096  doi: 10.1016/j.ijhydene.2014.04.096

    20. [20]

      Zang, Y.; Dong, X.; Wang, C. Chem. Eng. J. 2017, 313, 1583. doi: 10.1016/j.cej.2016.11.034  doi: 10.1016/j.cej.2016.11.034

    21. [21]

      Faungnawakij, K.; Shimoda, N.; Fukunaga, T.; Kikuchi, R.; Eguchi, K. Appl. Catal. A-Gen. 2008, 341, 139. doi: 10.1016/j.apcata.2008.02.039  doi: 10.1016/j.apcata.2008.02.039

    22. [22]

      Kim, W.; Mohaideen, K. K.; Seo, D. J.; Yoon, W. L. Int. J. Hydrog. Energy 2017, 42, 2081. doi: 10.1016/j.ijhydene.2016.11.014  doi: 10.1016/j.ijhydene.2016.11.014

    23. [23]

      Ritzkopf, I.; Vukojević, S.; Weidenthaler, C.; Grunwaldt, J. D.; Schüth, F. Appl. Catal. A-Gen. 2006, 302, 215. doi: 10.1016/j.apcata.2006.01.014  doi: 10.1016/j.apcata.2006.01.014

    24. [24]

      Xi, H.; Hou, X.; Liu, Y.; Qing, S.; Gao, Z. Angew. Chem. Int. Ed. 2014, 53, 11886. doi: 10.1002/anie.201405213  doi: 10.1002/anie.201405213

    25. [25]

      Wang, X.; Ma, K.; Guo, L.; Tian, Y.; Cheng, Q.; Bai, X.; Huang, J.; Ding, T.; Li, X. Appl. Catal. A-Gen. 2017, 540, 37. doi: 10.1016/j.apcata.2017.04.013  doi: 10.1016/j.apcata.2017.04.013

    26. [26]

      Wu, G. S.; Mao, D. S.; Lu, G. Z.; Cao, Y.; Fan, K. N. Catal. Lett. 2009, 130, 177. doi: 10.1007/s10562-009-9847-8  doi: 10.1007/s10562-009-9847-8

    27. [27]

      Cui, Y.; Dai, W. L. Catal. Sci. Technol. 2016, 6, 7752. doi: 10.1039/c6cy01575a  doi: 10.1039/c6cy01575a

    28. [28]

      Gong, J.; Yue, H.; Zhao, Y.; Zhao, S.; Zhao, L.; Lv, J.; Wang, S.; Ma, X. J. Am. Chem. Soc. 2012, 134, 13922. doi: 10.1021/ja3034153  doi: 10.1021/ja3034153

    29. [29]

      Zhu, S.; Gao, X.; Zhu, Y.; Zhu, Y.; Zheng, H.; Li, Y. J. Catal. 2013, 303, 70. doi: 10.1016/j.jcat.2013.03.018  doi: 10.1016/j.jcat.2013.03.018

    30. [30]

      Zhao, S.; Yue, H.; Zhao, Y.; Wang, B.; Geng, Y.; Lv, J.; Wang, S.; Gong, J.; Ma, X. J. Catal. 2013, 297, 142. doi: 10.1016/j.jcat.2012.10.004  doi: 10.1016/j.jcat.2012.10.004

    31. [31]

      Chen, L.; Guo, P.; Qiao, M.; Yan, S.; Li, H.; Shen, W.; Xu, H.; Fan, K. J. Catal. 2008, 257, 172. doi: 10.1016/j.jcat.2008.04.021  doi: 10.1016/j.jcat.2008.04.021

    32. [32]

      Yin, A.; Wen, C.; Guo, X.; Dai, W. L.; Fan, K. J. Catal. 2011, 280, 77. doi: 10.1016/j.jcat.2011.03.006  doi: 10.1016/j.jcat.2011.03.006

    33. [33]

      Haghofer, A.; Föttinger, K.; Girgsdies, F.; Teschner, D.; Knop-Gericke, A.; Schlögl, R.; Rupprechter, G. J. Catal. 2012, 286, 13. doi: 10.1016/j.jcat.2011.10.007  doi: 10.1016/j.jcat.2011.10.007

    34. [34]

      Arteta, L.; Remiro, A.; Epron, F.; Bion, N.; Aguayo, A. T.; Bilbao, J.; Gayubo, A. G. Ind. Eng. Chem. Res. 2016, 55, 3546. doi: 10.1021/acs.iecr.6b00126  doi: 10.1021/acs.iecr.6b00126

    35. [35]

      Tong, W.; West, A.; Cheung, K.; Yu, K. M.; Tsang, S. C. E. ACS Catal. 2013, 3, 1231. doi: 10.1021/cs400011m  doi: 10.1021/cs400011m

    36. [36]

      Haghofer, A.; Ferri, D.; Föttinger, K.; Rupprechter, G. ACS Catal. 2012, 2, 2305. doi: 10.1021/cs300480c  doi: 10.1021/cs300480c

    37. [37]

      Medina, J. C.; Figueroa, M.; Manrique, R.; Rodríguez Pereira, J.; Srinivasan, P. D.; Bravo-Suárez, J. J.; Baldovino Medrano, V. G.; Jiménez, R.; Karelovic, A. Catal. Sci. Technol. 2017, 7, 3375. doi: 10.1039/c7cy01021d  doi: 10.1039/c7cy01021d

    38. [38]

      Zhou, S.; Ma, K.; Tian, Y.; Meng, M.; Ding, T.; Zha, Y.; Zhang, T.; Li, X. RSC Adv. 2016, 6, 52411. doi: 10.1039/c6ra07940g  doi: 10.1039/c6ra07940g

    39. [39]

      He, Z.; Lin, H.; He, P.; Yuan, Y. J. Catal. 2011, 277, 54. doi: 10.1016/j.jcat.2010.10.010  doi: 10.1016/j.jcat.2010.10.010

    40. [40]

      Wang, Z. Q.; Xu, Z. N.; Peng, S. Y.; Zhang, M. J.; Lu, G.; Chen, Q. S.; Chen, Y.; Guo, G. C. ACS Catal. 2015, 5, 4255. doi: 10.1021/acscatal.5b00682  doi: 10.1021/acscatal.5b00682

    41. [41]

      Cheah, S. F.; Brown, G. E.; Parks, G. A. Am. Miner. 2000, 85, 118. doi: 10.2138/am-2000-0113  doi: 10.2138/am-2000-0113

    42. [42]

      Hariu, T.; Arima, H.; Sugiyama, K. J. Miner. Petrol. Sci. 2013, 108, 111. doi: 10.2465/jmps.121022c  doi: 10.2465/jmps.121022c

    43. [43]

      McKeown, D. A. J. Non-Cryst. Solids 1994, 180, 1. doi: 10.1016/0022-3093(94)90393-X  doi: 10.1016/0022-3093(94)90393-X

    44. [44]

      Zhang, B.; Hui, S.; Zhang, S.; Ji, Y.; Li, W.; Fang, D. J. Nat. Gas Chem. 2012, 21, 563. doi:10.1016/S1003-9953(11)60405-2  doi: 10.1016/S1003-9953(11)60405-2

    45. [45]

      Liu, Z. X.; Li, W. B. Acta Phys. -Chim. Sin. 2016, 32, 1795.  doi: 10.3866/PKU.WHXB201606021

    46. [46]

      Zhu, S.; Gao, X.; Zhu, Y.; Fan, W.; Wang, J.; Li, Y. Catal. Sci. Technol. 2015, 5, 1169. doi: 10.1039/C4CY01148A  doi: 10.1039/C4CY01148A

    47. [47]

      Zhu, Y.; Kong, X.; Li, X.; Ding, G.; Zhu, Y.; Li, Y. W. ACS Catal. 2014, 4, 3612. doi: 10.1021/cs5009283  doi: 10.1021/cs5009283

    48. [48]

      Mathew, T.; Yamada, Y.; Ueda, A.; Shioyama, H.; Kobayashi, T.; Gopinath, C. S. Appl. Catal. A-Gen. 2006, 300, 58. doi: 10.1016/j.apcata.2005.10.047  doi: 10.1016/j.apcata.2005.10.047

    49. [49]

      Mastalir, A.; Frank, B.; Szizybalski, A.; Soerijanto, H.; Deshpande, A.; Niederberger, M.; Schomäcker, R.; Schlögl, R.; Ressler, T. J. Catal. 2005, 230, 464. doi: 10.1016/j.jcat.2004.12.020  doi: 10.1016/j.jcat.2004.12.020

    50. [50]

      Zhang, L.; Meng, M.; Zhou, S.; Sun, Z.; Zhang, J.; Xie, Y.; Hu, T. J. Power Sources 2013, 232, 286. doi: 10.1016/j.jpowsour.2013.01.071  doi: 10.1016/j.jpowsour.2013.01.071

    51. [51]

      Zhou, X.; Meng, M.; Sun, Z.; Li, Q.; Jiang, Z. Chem. Eng. J. 2011, 174, 400. doi: 10.1016/j.cej.2011.09.018  doi: 10.1016/j.cej.2011.09.018

    52. [52]

      Fukunaga, T.; Ryumon, N.; Shimazu, S. Appl. Catal. A-Gen. 2008, 348, 193. doi: 10.1016/j.apcata.2008.06.031  doi: 10.1016/j.apcata.2008.06.031

    53. [53]

      Tanaka, Y.; Kikuchi, R.; Takeguchi, T.; Eguchi, K. Appl. Catal. B-Environ. 2005, 57, 211. doi: 10.1016/j.apcatb.2004.11.007  doi: 10.1016/j.apcatb.2004.11.007

    54. [54]

      Erena, J.; Vicente, J.; Aguayo, A. T.; Olazar, M.; Bilbao, J.; Gayubo, A. G. Appl. Catal. A-Gen. 2013, 142, 315. doi: 10.1016/j.apcatb.2013.05.034  doi: 10.1016/j.apcatb.2013.05.034

    55. [55]

      Velu, S.; Suzuki, K.; Okazaki, M.; Kapoor, M. P.; Osaki, T.; Ohashi, F. J. Catal. 2000, 194, 373. doi: 10.1006/jcat.2000.2940  doi: 10.1006/jcat.2000.2940

    56. [56]

      Kim, A. R.; Lee, B.; Park, M. J.; Moon, D. J.; Bae, J. W. Catal. Commun. 2012, 19, 66. doi: 10.1016/j.catcom.2011.12.023  doi: 10.1016/j.catcom.2011.12.023

    57. [57]

      Jochum, W.; Penner, S.; Kramer, R.; Fottinger, K.; Rupprechter, G.; Klotzer, B. J. Catal. 2008, 256, 278. doi: 10.1016/j.jcat.2008.03.018  doi: 10.1016/j.jcat.2008.03.018

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    3. [3]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    4. [4]

      Honglin Gao Chunlin Yuan Hongyu Chen Aiyi Dong Pan Gao Guangjin Hou . Surface gallium hydride on Ga2O3 polymorphs: A comparative solid-state NMR study. Chinese Journal of Structural Chemistry, 2025, 44(4): 100561-100561. doi: 10.1016/j.cjsc.2025.100561

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    8. [8]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    14. [14]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    15. [15]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    16. [16]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    17. [17]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    18. [18]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    19. [19]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    20. [20]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

Metrics
  • PDF Downloads(16)
  • Abstract views(1204)
  • HTML views(292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return