Citation: ZHANG Shushan, ZHOU Jianzhang, WU Deyin, TIAN Zhongqun. Application of Ag Nanoparticle-Modified Fiber Probe for Plasmonic[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 307-316. doi: 10.3866/PKU.WHXB201805162 shu

Application of Ag Nanoparticle-Modified Fiber Probe for Plasmonic

  • Corresponding author: ZHOU Jianzhang, jzzhou@xmu.edu.cn
  • Received Date: 18 April 2018
    Revised Date: 10 May 2018
    Accepted Date: 11 May 2018
    Available Online: 16 March 2018

    Fund Project: the National Natural Science Foundation of China 21021002the National Natural Science Foundation of China 91023043the National Natural Science Foundation of China 91023006The project was supported by the National Natural Science Foundation of China (91023043, 21021002, 91023006)

  • In this study, a localized surface plasmon resonance (LSPR) fiber probe modified with Ag nanoparticles (NPs) was developed. The LSPR fiber probe not only serves as a reaction substrate for plasmonic catalysis, but also detects in situ surface-enhanced Raman spectroscopy (SERS) signals from the reaction product, thereby achieving the integration of the plasmonic catalysis reactions and SERS signal detection. To fabricate the LSPR probe, plasmonic Ag NPs were first self-assembled on the surface of the fiber probe with assistance by the amination and silanization of (3-aminopropyl) trimethoxysilane (APTMS) molecules. p-Aminothiophenol (PATP) was chosen as a model molecule for plasmonic catalytic reaction. By regulating the self-assembly time of the Ag NPs, a uniform distributed monolayer of Ag NPs was formed on the surface of the probe, with which excellent plasmonic catalysis effects and SERS signal collection from the reaction product of 4, 4′-dimercaptoazobenzene (DMAB) were achieved. It was found that the characteristic SERS signal of the plasmonic catalytic reaction product DMAB obtained from internal excitation and collection was 12.8 times more intense than that from the external excitation and collection under the same laser intensity conditions, demonstrating that the internal excitation and collection method was advantageous in the plasmonic catalysis and SERS signal detection. The LSPR fiber probe was demonstrably qualified to quantitatively detect the concentrations of PATP solutions in the concentration ranges 10−4–10−8 mol∙L−1. Using the LSPR fiber probe, we also realized an in situ kinetics study of the PATP coupling reaction enhanced by plasmonic catalysis. The results showed that the Ag NP-based LSPR fiber probe with internal excitation and collection modes had the advantages of high sensitivity, low cost, facile preparation, and most importantly, applicability to in situ detection in a flexible manner with less damage to the samples. The preliminary study also indicated that it was feasible to combine the LSPR fiber probe with near-field scanning optical microscopy, not only to obtain morphological images of the surface but also to simultaneously perform the plasmonic catalysis reaction and the detection of micro-domains of the surface. This permitted the acquisition of a two-dimensional distributional assessment of surface reactions by the plasmonic catalysis.
  • 加载中
    1. [1]

      Chen, X. J.; Cabello, G.; Wu, D. Y.; Tian, Z. Q. J. Photochem. Photobio. C 2014, 21, 54. doi: 10.1016/j.jphotochemrev.2014.10.003  doi: 10.1016/j.jphotochemrev.2014.10.003

    2. [2]

      Tang, Z. Y. Acta Phys. -Chim. Sin. 2018, 34, 121.  doi: 10.3866/PKU.WHXB201707261

    3. [3]

      Yilmaz, M.; Senlik, E.; Biskin, E.; Yavuz, M. S.; Tamer, U.; Demirel, G. Phys. Chem. Chem. Phys. 2014, 16, 5563. doi: 10.1039/c3cp55087g  doi: 10.1039/c3cp55087g

    4. [4]

      Zhou, H.; Yang, D.; Ivleva, N. P.; Mircescu, N. E.; Niessner, R.; Haisch, C. Anal. Chem. 2014, 86, 1525. doi: 10.1021/ac402935p  doi: 10.1021/ac402935p

    5. [5]

      Ossig, R.; Kwon, Y. H.; Hubenthal, F.; Kronfeldt, H. D. Appl. Phys. B 2012, 106, 835. doi: 10.1007/s00340-011-4866-8  doi: 10.1007/s00340-011-4866-8

    6. [6]

      Cao, J.; Wang, J. New J. Chem. 2015, 39, 2421. doi: 10.1039/c4nj02014f  doi: 10.1039/c4nj02014f

    7. [7]

      Jin, D.; Bai, Y.; Chen, H.; Liu, S.; Chen, N.; Huang, J.; Huang, S.; Chen, Z. Anal. Methods 2015, 7, 1307. doi: 10.1039/c4ay02725f  doi: 10.1039/c4ay02725f

    8. [8]

      Guo, X. D.; Tang, J.; Liu, W. Y.; Guo, H.; Fang, G. C.; Zhao, M. M.; Wang, L.; Xia, M. J.; Liu, J. Acta Phys. Sin. 2017, 66 (4), 44208.  doi: 10.7498/aps.66.044208

    9. [9]

      Lan, X.; Han, Y.; Wei, T.; Zhang, Y.; Jiang, L.; Tsai, H. L.; Xiao, H. Opt. Lett. 2009, 34, 2285. doi: 10.1364/OL.34.002285  doi: 10.1364/OL.34.002285

    10. [10]

      Viets, C.; Hill, W. J. Mol. Struct. 2001, 563564, 163. doi: 10.1016/S0022-2860(00)00876-0  doi: 10.1016/S0022-2860(00)00876-0

    11. [11]

      Cao, J.; Zhao, D.; Mao, Q. RSC Adv. 2015, 5, 99491. doi: 10.1039/c5ra18504a  doi: 10.1039/c5ra18504a

    12. [12]

      Ma, X.; Huo, H.; Wang, W.; Tian, Y.; Wu, N.; Guthy, C.; Shen, M.; Wang, X. Sensors 2010, 10, 11064. doi: 10.3390/s101211064  doi: 10.3390/s101211064

    13. [13]

      Jayawardhana, S.; Kostovski, G.; Mazzolini, A. P.; Stoddart, P. R. Appl. Opt. 2011, 50, 155. doi: 10.1364/AO.50.000155  doi: 10.1364/AO.50.000155

    14. [14]

      Sherry, L. J.; Jin, R.; Mirkin, C. A.; Schatz, G. C.; Van Duyne, R. P. Nano Lett. 2006, 6, 2060. doi: 10.1021/nl061286u  doi: 10.1021/nl061286u

    15. [15]

      Chen, Z.; Dai, Z.; Chen, N.; Liu, S.; Pang, F.; Lu, B.; Wang, T. IEEE Photonic. Technol. Lett. 2014, 26, 777. doi: 10.1109/lpt.2014.2306134  doi: 10.1109/lpt.2014.2306134

    16. [16]

      Huang, Y. F.; Zhang, M.; Zhao, L. B.; Feng, J. M.; Wu, D. Y.; Ren, B.; Tian, Z. Q. Angew. Chem. Int. Ed. 2014, 53, 2353. doi: 10.1002/anie.201310097  doi: 10.1002/anie.201310097

    17. [17]

      Lee, J.; Mubeen, S.; Ji, X.; Stucky, G. D.; Moskovits, M. Nano Lett. 2012, 12, 5014. doi: 10.1021/nl302796f  doi: 10.1021/nl302796f

    18. [18]

      Mukherjee, S.; Libisch, F.; Large, N.; Neumann, O.; Brown, L. V.; Cheng, J.; Lassiter, J. B.; Carter, E. A.; Nordlander, P.; Halas, N. J. Nano Lett. 2013, 13, 240. doi: 10.1021/nl303940z  doi: 10.1021/nl303940z

    19. [19]

      Christopher, P.; Xin, H.; Linic, S. Nat. Chem. 2011, 3, 467. doi: 10.1038/nchem.1032  doi: 10.1038/nchem.1032

    20. [20]

      Christopher, P.; Xin, H.; Marimuthu, A.; Linic, S. Nat. Mater. 2012, 11, 1044. doi: 10.1038/nmat3454  doi: 10.1038/nmat3454

    21. [21]

      He, X.; Tang, T. D.; Yi, J.; Liu, B. J.; Wang, F. F.; Ren, B.; Zhou, J. Z. Acta Phys. -Chim. Sin. 2015, 31, 1575.  doi: 10.3866/PKU.WHXB201506041

    22. [22]

      Chen, B.; Jiao, X.; Chen, D. Cryst. Growth Des. 2010, 10, 3378. doi: 10.1021/cg901497p  doi: 10.1021/cg901497p

    23. [23]

      Wu, D. Y.; Liu, X. M.; Huang, Y. F.; Ren, B.; Xu, X.; Tian, Z. Q. J. Phys. Chem. C 2009, 113, 18212. doi: 10.1021/jp9050929  doi: 10.1021/jp9050929

    24. [24]

      Zhao, L. B.; Huang, Y. F.; Wu, D. Y.; Ren, B. Acta Chim. Sin. 2014, 72, 1125. doi: 10.6023/a14080602  doi: 10.6023/a14080602

    25. [25]

      Kafle, B.; Poveda, M.; Habteyes, T. G. J. Phys. Chem. Lett. 2017, 8, 890. doi: 10.1021/acs.jpclett.7b00106  doi: 10.1021/acs.jpclett.7b00106

    26. [26]

      Samal, A. K.; Polavarapu, L.; Rodal-Cedeira, S.; Liz-Marzan, L. M.; Perez-Juste, J.; Pastoriza-Santos, I. Langmuir 2013, 29, 15076. doi: 10.1021/la403707j  doi: 10.1021/la403707j

    27. [27]

      Cao, J.; Zhao, D.; Mao, Q. Analyst 2017, 142, 596. doi: 10.1039/c6an02414a  doi: 10.1039/c6an02414a

    28. [28]

      Foti, A.; D'Andrea, C.; Bonaccorso, F.; Lanza, M.; Calogero, G.; Messina, E.; Maragò, O. M.; Fazio, B.; Gucciardi, P. G. Plasmonics 2013, 8, 13. doi: 10.1007/s11468-012-9371-3  doi: 10.1007/s11468-012-9371-3

    29. [29]

      Jayawardhana, S.; Rosa, L.; Juodkazis, S.; Stoddart, P. R. Sci. Rep. 2013, 3, 2335. doi: 10.1038/srep02335  doi: 10.1038/srep02335

    30. [30]

      Yan, X.; Wang, L.; Tan, X.; Tian, B.; Zhang, J. Sci. Rep. 2016, 6, 30193. doi: 10.1038/srep30193  doi: 10.1038/srep30193

    31. [31]

      Qi, D.; Yan, X.; Wang, L.; Zhang, J. Chem. Commun. 2015, 51, 8813. doi: 10.1039/c5cc02468d  doi: 10.1039/c5cc02468d

    32. [32]

      Yan, X.; Xu, Y.; Tian, B.; Lei, J.; Zhang, J.; Wang, L. Appl. Catal. B: Environ. 2018, 224, 305. doi: 10.1016/j.apcatb.2017.10.009  doi: 10.1016/j.apcatb.2017.10.009

    33. [33]

      Xie, W.; Schlucker, S. Chem. Commun. 2018, 54, 2326. doi: 10.1039/c7cc07951f  doi: 10.1039/c7cc07951f

    34. [34]

      Joseph, V.; Engelbrekt, C.; Zhang, J.; Gernert, U.; Ulstrup, J.; Kneipp, J. Angew. Chem. Int. Ed. 2012, 51, 7592. doi: 10.1002/anie.20120352  doi: 10.1002/anie.20120352

  • 加载中
    1. [1]

      Yang YANGPengcheng LIZhan SHUNengrong TUZonghua WANG . Plasmon-enhanced upconversion luminescence and application of molecular detection. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 877-884. doi: 10.11862/CJIC.20230440

    2. [2]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    3. [3]

      Liang MAHonghua ZHANGWeilu ZHENGAoqi YOUZhiyong OUYANGJunjiang CAO . Construction of highly ordered ZIF-8/Au nanocomposite structure arrays and application of surface-enhanced Raman spectroscopy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1743-1754. doi: 10.11862/CJIC.20240075

    4. [4]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    5. [5]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    6. [6]

      Gaopeng LiuLina LiBin WangNingjie ShanJintao DongMengxia JiWenshuai ZhuPaul K. ChuJiexiang XiaHuaming Li . Construction of Bi Nanoparticles Loaded BiOCl Nanosheets Ohmic Junction for Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(7): 2306041-0. doi: 10.3866/PKU.WHXB202306041

    7. [7]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    8. [8]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    9. [9]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    10. [10]

      Lilong Gao Yuhao Zhai Dongdong Zhang Linjun Huang Kunyan Sui . Exploration of Thiol-Ene Click Polymerization in Polymer Chemistry Experiment Teaching. University Chemistry, 2025, 40(4): 87-93. doi: 10.12461/PKU.DXHX202405143

    11. [11]

      Shengbiao Zheng Liang Li Nini Zhang Ruimin Bao Ruizhang Hu Jing Tang . Metal-Organic Framework-Derived Materials Modified Electrode for Electrochemical Sensing of Tert-Butylhydroquinone: A Recommended Comprehensive Chemistry Experiment for Translating Research Results. University Chemistry, 2024, 39(7): 345-353. doi: 10.3866/PKU.DXHX202310096

    12. [12]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    13. [13]

      Yongming Guo Jie Li Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057

    14. [14]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    15. [15]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    16. [16]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    17. [17]

      Pingping LUShuguang ZHANGPeipei ZHANGAiyun NI . Preparation of zinc sulfate open frameworks based probe materials and detection of Pb2+ and Fe3+ ions. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 959-968. doi: 10.11862/CJIC.20240411

    18. [18]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    19. [19]

      Jinwang WuQijing XieChengliang ZhangHaifeng Shi . Rationally Designed ZnFe1.2Co0.8O4/BiVO4 S-Scheme Heterojunction with Spin-Polarization for the Elimination of Antibiotic. Acta Physico-Chimica Sinica, 2025, 41(5): 100050-0. doi: 10.1016/j.actphy.2025.100050

    20. [20]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

Metrics
  • PDF Downloads(9)
  • Abstract views(400)
  • HTML views(49)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return