Citation: LIAN Mengshui, WANG Yali, ZHAO Mingquan, LI Qianqian, WENG Weizheng, XIA Wensheng, WAN Huilin. Stability of Ni/SiO2 in Partial Oxidation of Methane: Effects of W Modification[J]. Acta Physico-Chimica Sinica, ;2019, 35(6): 607-615. doi: 10.3866/PKU.WHXB201805054 shu

Stability of Ni/SiO2 in Partial Oxidation of Methane: Effects of W Modification

  • Corresponding author: XIA Wensheng, wsxia@xmu.edu.cn WAN Huilin, hlwan@xmu.edu.cn
  • Received Date: 20 May 2018
    Revised Date: 12 June 2018
    Accepted Date: 20 June 2018
    Available Online: 11 June 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21373169), and PCSIRT (IRT1036)the National Natural Science Foundation of China 21373169PCSIRT IRT1036

  • With the discovery and large-scale exploitation of natural gas resources such as shale gas and combustible ice, which are mainly composed of methane, their effective utilization has become a national strategic interest. Partial oxidation of methane (POM) to synthesis gas is one of the important methods for the utilization of natural gas and shale gas resources. The commonly used Ni/SiO2 catalyst for POM easily deactivates due to carbon deposition on the surface. To solve this problem, a urea precipitation method was employed in this work to prepare Ni-based catalysts modified with different amounts of tungsten (at W/Ni molar ratios of 0, 0.01, 0.03, 0.05, 0.07, and 0.10), and the catalyst stability in POM as well as the role of W were investigated. From characterizations such as X-ray diffraction (XRD), transmission electron microscopy (TEM), temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectroscopy (XPS), we obtained the following results. The amount of W added to the Ni-based catalysts has a significant influence on their catalytic performances in POM and their physicochemical properties. The particle size of Ni in the catalysts decreases with W addition, and the Ni particle distribution on the support surfaces becomes more uniformed; however, the catalytic activity for POM is not significantly influenced. However, W-modified Ni-based catalysts show an increasing improvement in their stability in POM with increasing W/Ni molar ratio, with an optimum at the W/Ni molar ratio of 0.07; at the W/Ni molar ratio of 0.10, they exhibit a rapid deactivation in POM in a short time. Although interactions between Ni and SiO2 in the as-prepared catalysts are weak, the presence of adequate tungsten (W/Ni molar ratio of 0.05 and above) in the Ni-based catalysts can reduce the Ni particle size to some extent, and lead to the formation of strong interactions between Ni and W, which leads to an improvement in the dispersion of Ni on the support surface and imparts resistance for Ni particle growth in the POM reaction. The increased interaction between Ni and W changes the chemical state or oxygen affinity of Ni particles on the catalyst surfaces, and some of the partially oxidized Ni species (Niδ+) on the catalyst surfaces coexist with reduced Ni species (Ni0) during POM. Using an adequate amount of W-modified Ni catalysts results in almost no carbon deposition on the surfaces during POM, but using only a moderate amount results in good catalytic behavior and stability in POM. This finding suggests that the presence of W can not only enhance the anti-coking ability of the Ni-based catalysts and sustain their good stability in POM if the W content is low (i.e., W/Ni molar ratio of 0.07 and below), but also lead to the deactivation of W-modified catalysts in POM if the W content is high (i.e., W/Ni molar ratio of 0.10 and above), due to high oxygen affinity or the presence of more Ni species in oxidized form. In addition, α-WC (tungsten carbide) was identified using XRD to be formed on the surface of the moderate-amount W-modified Ni catalysts after POM, and it could inhibit or eliminate carbon deposition on the Ni-based catalyst surfaces. The catalytic performance evaluation of the catalysts in POM under a long time period confirmed that α-WC is stable.
  • 加载中
    1. [1]

      Chai, R. J.; Zhang, Z. Q.; Chen, P. J.; Zhao, G. F.; Liu, Y.; Lu, Y. Microporous Mesoporous Mater. 2017, 253, 123. doi: 10.1016/j.micromeso.2017.07.005  doi: 10.1016/j.micromeso.2017.07.005

    2. [2]

      Luo, Z.; Kriz, D. A.; Miao, R.; Kuo, C. H.; Zhong, W.; Guild, C.; He, J. K.; Willis, B.; Dang, Y. L.; Suib, S. L.; et al. Appl. Catal. A 2018, 554, 54. doi: 10.1016/j.apcata.2018.01.020  doi: 10.1016/j.apcata.2018.01.020

    3. [3]

      Wang, F.; Li, W. Z.; Lin, J. D.; Chen, Z. Q.; Wang, Y. Appl. Catal. B 2018, 231, 292. doi: 10.1016/j.apcatb.2018.03.018  doi: 10.1016/j.apcatb.2018.03.018

    4. [4]

      Guo, S. S.; Wang, J. W.; Ding, C. M.; Duan, Q. L.; Ma, Q.; Zhang, K.; Liu, P. Int. J. Hydrog. Energy 2018, 43, 6603. doi: 10.1016/j.ijhydene.2018.02.035  doi: 10.1016/j.ijhydene.2018.02.035

    5. [5]

      Yang, M. H.; Wu, H. H.; Wu, H. Y.; Huang, C. J.; Weng, W. Z.; Chen, M. S.; Wan, H. L. RSC Adv. 2016, 6, 81237. doi: 10.1039/c6ra15358e  doi: 10.1039/c6ra15358e

    6. [6]

      Kim, D.; Park, G. A.; Lim, J.; Ha, K. S. Chem. Eng. J. 2017, 316, 1011. doi: 10.1016/j.cej.2017.02.014  doi: 10.1016/j.cej.2017.02.014

    7. [7]

      Rodemerck, U.; Schneider, M.; Linke, D. Catal. Commun. 2017, 102, 98. doi: 10.1016/j.catcom.2017.08.031  doi: 10.1016/j.catcom.2017.08.031

    8. [8]

      Li, L.; He, S. C.; Song, Y. Y.; Zhao, J.; Ji, W. J.; Au, C. T. J. Catal. 2012, 288, 54. doi: 10.1016/j.jcat.2012.01.004  doi: 10.1016/j.jcat.2012.01.004

    9. [9]

      Wang, F. G.; Han, B. L.; Zhang, L. J.; Xu, L. L.; Yu, H.; Shi, W. D. Appl. Catal. B 2018, 235, 26. doi: 10.1016/j.apcatb.2018.04.069  doi: 10.1016/j.apcatb.2018.04.069

    10. [10]

      Ashok, J.; Bian, Z.; Wang, Z.; Kawi, S. Catal. Sci. Technol. 2018, 8, 1730. doi: 10.1039/c7cy02475d  doi: 10.1039/c7cy02475d

    11. [11]

      Li, Q.; Hou, Y. H.; Dong, L. Y.; Huang, M. X.; Weng, W. Z.; Xia, W. S.; Wan, H. L. Acta Phys. -Chim. Sin. 2013, 29, 2245.  doi: 10.3866/PKU.WHXB201308201

    12. [12]

      Wu, H. J.; Pantaleo, G.; La Parola, V.; Venezia, A. M.; Collard, X.; Aprile, C.; Liotta, L. F. Appl. Catal. B 2014, 156–157, 350. doi: 10.1016/j.apcatb.2014.03.018  doi: 10.1016/j.apcatb.2014.03.018

    13. [13]

      Zhu, J. Q.; Peng, X. X.; Yao, L.; Tong, D. M.; Hu, C. W. Catal. Sci. Technol. 2012, 2, 529. doi: 10.1039/c1cy00333j  doi: 10.1039/c1cy00333j

    14. [14]

      Wang, Y. L.; Li, Q.; Weng, W. Z.; Xia, W. S.; Wan, H. L. Acta Phys. -Chim. Sin. 2016, 32, 2776.  doi: 10.3866/PKU.WHXB201608302

    15. [15]

      Zhao, X. Y.; Li, H. R.; Zhang, J. P.; Shi, L. Y.; Zhang, D. S. Int. J. Hydrog. Energy 2016, 41, 2447. doi: 10.1016/j.ijhydene.2015.10.111  doi: 10.1016/j.ijhydene.2015.10.111

    16. [16]

      Zhang, S. H.; Shi, C.; Chen, B. B.; Zhang, Y. L.; Qiu, J. S. Catal. Commun. 2015, 69, 123. doi: 10.1016/j.catcom.2015.06.003  doi: 10.1016/j.catcom.2015.06.003

    17. [17]

      Claridge, J. B.; York, A. P. E.; Brungs, A. J.; Marquez-Alvarez, C.; Sloan, J.; Tsang, S. C.; Green, M. L. H. J. Catal. 1998, 180, 85. doi: 10.1006/jcat.1998.2260  doi: 10.1006/jcat.1998.2260

    18. [18]

      Li, J. F.; Xiao, B.; Yan, R.; Yi, R. J. Chem. Eng. 2007, 35, 53.

    19. [19]

      Jiang, J. T.; Wei, X. J.; Xu, C. Y.; Zhou, Z. X.; Zhen, L. J. Magn. Magn. Mater. 2013, 334, 111. doi: 10.1016/j.jmmm.2012.12.036  doi: 10.1016/j.jmmm.2012.12.036

    20. [20]

      Ding, C. M.; Wang, J. W.; Ai, G. G.; Liu, S. B.; Liu, P.; Zhang, K.; Han, Y. L.; Ma, X. S. Fuel 2016, 175, 1. doi: 10.1016/j.fuel.2016.02.024  doi: 10.1016/j.fuel.2016.02.024

    21. [21]

      He, S. F.; Zheng, X. M.; Mo, L. Y.; Yu, W. J.; Wang, H.; Luo, Y. M. MRS Bull. 2014, 49, 108. doi: 10.1016/j.materresbull.2013.08.051  doi: 10.1016/j.materresbull.2013.08.051

    22. [22]

      Xia, W. S.; Hou, Y. H.; Chang, G.; Weng, W. Z.; Han, G. B.; Wan, H. L. Int. J. Hydrog. Energy 2012, 37, 8343. doi: 10.1016/j.ijhydene.2012.02.141  doi: 10.1016/j.ijhydene.2012.02.141

    23. [23]

      Solsona, B.; López Nieto, J. M.; Concepción, P.; Dejoz, A.; Ivars, F.; Vázquez, M. I. J. Catal. 2011, 280, 28. doi: 10.1016/j.jcat.2011.02.010  doi: 10.1016/j.jcat.2011.02.010

    24. [24]

      Venugopal, A.; Naveen Kumar, S.; Ashok, J.; Hari Prasad, D.; Durga Kumari, V.; Prasad, K. B. S.; Subrahmanyam, M. Int. J. Hydrog. Energy 2007, 32, 1782. doi: 10.1016/j.ijhydene.2007.01.007  doi: 10.1016/j.ijhydene.2007.01.007

    25. [25]

      Arbag, H.; Yasyerli, S.; Yasyerli, N.; Dogu, T.; Dogu, G. Top. Catal. 2013, 56, 1695. doi: 10.1007/s11244-013-0105-3  doi: 10.1007/s11244-013-0105-3

    26. [26]

      Theofanidis, S. A.; Galvita, V. V.; Poelman, H.; Marin, G. B. ACS Catal. 2015, 5, 3028. doi: 10.1021/acscatal.5b00357  doi: 10.1021/acscatal.5b00357

    27. [27]

      Xia, W. S.; Chang, G.; Hou, Y. H.; Weng, W. Z.; Wan, H. L. Acta Phys. -Chim. Sin. 2011, 27, 1567.  doi: 10.3866/PKU.WHXB20110627

    28. [28]

      Xia, W. S.; Chen, R. F.; Wang, Y. L.; Li, Q.; Weng, W. Z.; Wan, H. L. Xiamen Univ. J. Nat. Sci. Ed. 2015, 54, 17.  doi: 10.6043/j.issn.0438-0479.2015.05.17

    29. [29]

      Mohammadzadeh Valendar, H.; Yu, D. W.; Barati, M.; Rezaie, H. J. Therm. Anal. Calorim. 2016, 128, 553. doi: 10.1007/s10973-016-5883-y  doi: 10.1007/s10973-016-5883-y

  • 加载中
    1. [1]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    2. [2]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    3. [3]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    8. [8]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    9. [9]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    10. [10]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    11. [11]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    12. [12]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    13. [13]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    15. [15]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    16. [16]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    17. [17]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

    18. [18]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    19. [19]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    20. [20]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

Metrics
  • PDF Downloads(12)
  • Abstract views(646)
  • HTML views(46)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return