Citation: HE Chang, HOU Jianhui. Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1202-1210. doi: 10.3866/PKU.WHXB201803271 shu

Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors

  • Corresponding author: HE Chang, hechang@iccas.ac.cn HOU Jianhui, hjhzlz@iccas.ac.cn
  • Received Date: 26 February 2018
    Revised Date: 20 March 2018
    Accepted Date: 21 March 2018
    Available Online: 27 November 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (521734008)the National Natural Science Foundation of China 521734008

  • Solution-processed bulk-heterojunction organic solar cells (BHJ-OSCs), with their advantages of light weight, low cost, and easy fabrication, are a photovoltaic technology with practical potentials. In BHJ-OSCs, the exciton dissociation and charge transport are highly sensitive to the molecular packing pattern and phase separation morphology in the active layer. On the other hand, when using photovoltaic small molecules (SMs), the purity can be controlled due to their well-defined chemical structure, and therefore there is better reproducibility in device performance. Especially, the non-fullerene acceptors are easier to tune in their light absorption and energy level. Hence, there has been considerable interest in small non-fullerene SM organic solar cells (NF-SM-OSCs). Although these cells have the dual advantages of non-fullerene acceptor materials and SMs, the fabrication of high-efficiency cells still possess great challenges. For example, efficient photovoltaic SMs typically possess an acceptor-donor-acceptor (A-D-A) structure that causes intrinsic anisotropy, making it more complicated to modulate and control the morphology of the nanoscale active layer. In this article, we will summarize recent advances in high-performance NF-SM-OSCs, and present an introduction of the specific requirements for SM donors in the small NF-SM-OSCs. We first summarize our works on SM donors with the A-D-A structure. The trialkylthienyl-substituted benzodithiophene (TriBDT-T) unit is employed as the D-core unit, and the A end groups include rhodanine (RN), cyano-rhodanine (RCN), and 1, 3-indanone (IDO). The band gap (Eg) of these compounds is about 2.0 eV, with the low-lying highest occupied molecular orbital (HOMO) level of -5.51 eV. First, NF-SM-OSCs with DRTB-T and a non-fullerene acceptor (IDIC) were constructed. The morphology of the active layer was fine-tuned by solvent vapor annealing (SVA), leading to the formation of the desired interconnected nanoscale structure. Our results demonstrate that the molecular design of a wide band gap (WBG) donor to create a well-matched donor-acceptor pair with a low band gap (LBG) non-fullerene SM acceptor, as well as subtle morphological control, provides great potential to realize high-performance NFSM-OSCs. We also studied the molecular orientation optimization from the aspect of molecular design. We designed and synthesized a group of SM compounds having identical π-conjugated backbones and end groups with different alkyl chain lengths. Since these compounds have identical photoelectric properties, they allow us to focus on the significant influence of the end alkyl chains on the molecular orientation and intermolecular aggregation behavior in solid-state films. Characterization of the DRTB-T-CX films using 2D grazing incidence wide-angle X-ray scattering (GIWAXS) revealed an obvious transition of orientation from edge-on to face-on relative to the substrate when the end alkyl chain is lengthened. This demonstrates that the length of the end alkyl chain can be used to modify the molecular orientation. A DRTB-T-C4/IT-4F-based device achieved a maximum power conversion efficiency (PCE) of up to 11.24%, which is the best performance reported for state-of-the-art NF-SM-OSCs. On this basis, the challenges and prospects of NF-SM-OSCs are discussed.
  • 加载中
    1. [1]

      Yu, G.; Gao, J.; Hummelen, J. C.; Wudl, F.; Heeger, A. J. Science 1995, 270, 1789. doi: 10.1126/science.270.5243.1789  doi: 10.1126/science.270.5243.1789

    2. [2]

      Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. Nat. Mater. 2005, 4, 864. doi: 10.1038/nmat1500  doi: 10.1038/nmat1500

    3. [3]

      Chen, J.; Cao, Y. Acc. Chem. Res. 2009, 42, 1709. doi: 10.1021/ar900061z  doi: 10.1021/ar900061z

    4. [4]

      Gunes, S.; Neugebauer, H.; Sariciftci, N. S. Chem. Rev. 2007, 107, 1324. doi: 10.1021/cr050149z  doi: 10.1021/cr050149z

    5. [5]

      Brabec, C. J.; Gowrisanker, S.; Halls, J. J. M.; Laird, D.; Jia, S. J.; Williams, S. P. Adv. Mater. 2010, 22, 3839. doi: 10.1002/adma.200903697  doi: 10.1002/adma.200903697

    6. [6]

      Zhao, Y.; Zou, W.; Li, H.; Lu, K.; Yan, W.; Wei, Z. Chin. J. Polym. Sci. 2017, 35, 261. doi: 10.1007/s10118-017-1875-z  doi: 10.1007/s10118-017-1875-z

    7. [7]

      Heo, Y. J.; Jung, Y. S.; Hwang, K.; Kim, J. E.; Yeo, J. S.; Lee, S.; Jeon, Y. J.; Lee, D.; Kim, D. Y. ACS Appl. Mater. Interfaces 2017, 9, 39519. doi: 10.1021/acsami.7b12420  doi: 10.1021/acsami.7b12420

    8. [8]

      Huang, Y. C.; Cha, H. C.; Chen, C. Y.; Tsao, C. S. Prog. Photovoltaics 2017, 25, 928. doi: 10.1002/pip.2907  doi: 10.1002/pip.2907

    9. [9]

      Krebs, F. C.; Norrman, K. ACS Appl. Mater. Interfaces 2010, 2, 877. doi: 10.1021/am900858x  doi: 10.1021/am900858x

    10. [10]

      Mishra, A.; Bauerle, P. Angew. Chem. Int. Ed. 2012, 51, 2020. doi: 10.1002/anie.201102326  doi: 10.1002/anie.201102326

    11. [11]

      Chen, Y.; Wan, X.; Long, G. Acc. Chem. Res. 2013, 46, 2645. doi: 10.1021/ar400088c  doi: 10.1021/ar400088c

    12. [12]

      Collins, S. D.; Ran, N. A.; Heiber, M. C.; Nguyen, T. Q. Adv. Energy Mater. 2017, 7, 1602242. doi: 10.1002/aenm.201602242  doi: 10.1002/aenm.201602242

    13. [13]

      Deng, D.; Zhang, Y.; Zhang, J.; Wang, Z.; Zhu, L.; Fang, J.; Xia, B.; Wang, Z.; Lu, K.; Ma, W.; et al. Nat. Commun. 2016, 7, 13740. doi: 10.1038/ncomms13740  doi: 10.1038/ncomms13740

    14. [14]

      Wan, J.; Xu, X.; Zhang, G.; Li, Y.; Feng, K.; Peng, Q. Energy Environ. Sci. 2017, 10, 1739. doi: 10.1039/c7ee00805h  doi: 10.1039/c7ee00805h

    15. [15]

      Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245. doi: 10.1039/c2cs15313k  doi: 10.1039/c2cs15313k

    16. [16]

      Cheacharoen, R.; Mateker, W. R.; Zhang, Q.; Kan, B.; Sarkisian, D.; Liu, X.; Love, J. A.; Wan, X.; Chen, Y.; Nguyen, T. Q.; et al. Sol. Energy Mater. Sol. Cells 2017, 161, 368. doi: 10.1016/j.solmat.2016.12.021  doi: 10.1016/j.solmat.2016.12.021

    17. [17]

      Nielsen, C. B.; Holliday, S.; Chen, H. Y.; Cryer, S. J.; McCulloch, I. Acc. Chem. Res. 2015, 48, 2803. doi: 10.1021/acs.accounts.5b00199  doi: 10.1021/acs.accounts.5b00199

    18. [18]

      Liu, Y.; Mu, C.; Jiang, K.; Zhao, J.; Li, Y.; Zhang, L.; Li, Z.; Lai, J. Y. L.; Hu, H.; Ma, T.; et al. Adv. Mater. 2015, 27, 1015. doi: 10.1002/adma.201404152  doi: 10.1002/adma.201404152

    19. [19]

      Li, S.; Liu, W.; Shi, M.; Mai, J.; Lau, T.; Wan, J.; Lu, X.; Li, C.; Chen, H. Energy Environ. Sci. 2016, 9, 604. doi: 10.1039/c5ee03481g  doi: 10.1039/c5ee03481g

    20. [20]

      Lin, Y.; Zhan, X. Mater. Horiz. 2014, 1, 470. doi: 10.1039/c4mh00042k  doi: 10.1039/c4mh00042k

    21. [21]

      Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    22. [22]

      Sension, R. J.; Szarka, A. Z.; Smith, G. R.; Hochstrasser, R. M. Chem. Phys. Lett. 1991, 185, 179. doi: 10.1016/S0009-2614(91)85043-V  doi: 10.1016/S0009-2614(91)85043-V

    23. [23]

      Sariciftci, N. S.; Heeger, A. J. Int. J. Mod. Phys. B 1994, 8, 237. doi: 10.1142/S0217979294000105  doi: 10.1142/S0217979294000105

    24. [24]

      Kraabel, B.; Lee, C. H.; McBranch, D.; Moses, D.; Sariciftci, N. S.; Heeger, A. J. Chem. Phys. Lett. 2013, 589, 63. doi: 10.1016/j.cplett.2013.08.069  doi: 10.1016/j.cplett.2013.08.069

    25. [25]

      Kang, H.; Kim, K. H.; Choi, J.; Lee, C.; Kim, B. J. ACS Macro Lett. 2014, 3, 1009. doi: 10.1021/mz500415a  doi: 10.1021/mz500415a

    26. [26]

      Zhan, C.; Yao, J. Chem. Mater. 2016, 28, 1948. doi: 10.1021/acs.chemmater.5b04339  doi: 10.1021/acs.chemmater.5b04339

    27. [27]

      Zhang, R.; Yang, H.; Zhou, K.; Zhang, J.; Yu, X.; Liu, J.; Han, Y. Macromolecules 2016, 49, 6987. doi: 10.1021/acs.macromol.6b01526  doi: 10.1021/acs.macromol.6b01526

    28. [28]

      Jiang, W.; Li, Y.; Wang, Z. Acc. Chem. Res. 2014, 47, 3135. doi: 10.1021/ar500240e  doi: 10.1021/ar500240e

    29. [29]

      Jiang, W.; Li, Y.; Wang, Z. Chem. Soc. Rev. 2013, 42, 6113. doi: 10.1039/c3cs60108k  doi: 10.1039/c3cs60108k

    30. [30]

      Sharenko, A.; Proctor, C. M.; van der Poll, T. S.; Henson, Z. B.; Nguyen, T. Q.; Bazan, G. C. Adv. Mater. 2013, 25, 4403. doi: 10.1002/adma.201301167  doi: 10.1002/adma.201301167

    31. [31]

      Chen, Y.; Zhang, X.; Zhan, C.; Yao, J. ACS Appl. Mater. Interfaces 2015, 7, 6462. doi: 10.1021/am507581w  doi: 10.1021/am507581w

    32. [32]

      Huang, J.; Wang, X.; Zhang, X.; Niu, Z.; Lu, Z.; Jiang, B.; Sun, Y.; Zhan, C.; Yao, J. ACS Appl. Mater. Interfaces 2014, 6, 3853. doi: 10.1021/am406050j  doi: 10.1021/am406050j

    33. [33]

      Sun, D.; Meng, D.; Cai, Y.; Fan, B.; Li, Y.; Jiang, W.; Huo, L.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2015, 137, 11156. doi: 10.1021/jacs.5b06414  doi: 10.1021/jacs.5b06414

    34. [34]

      Meng, D.; Sun, D.; Zhong, C.; Liu, T.; Fan, B.; Huo, L.; Li, Y.; Jiang, W.; Choi, H.; Kim, T.; et al. J. Am. Chem. Soc. 2016, 138, 375. doi: 10.1021/jacs.5b11149  doi: 10.1021/jacs.5b11149

    35. [35]

      Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; et al. J. Am. Chem. Soc. 2016, 138, 10184. doi: 10.1021/jacs.6b04368  doi: 10.1021/jacs.6b04368

    36. [36]

      Feng, G.; Xu, Y.; Zhang, J.; Wang, Z.; Zhou, Y.; Li, Y.; Wei, Z.; Li, C.; Li, W. J. Mater. Chem. A 2016, 4, 6056-6063. doi: 10.1039/c5ta10430k  doi: 10.1039/c5ta10430k

    37. [37]

      Zhou, J.; Zuo, Y.; Wan, X.; Long, G.; Zhang, Q.; Ni, W.; Liu, Y.; Li, Z.; He, G.; Li, C.; et al. J. Am. Chem. Soc. 2013, 135, 8484. doi: 10.1021/ja403318y  doi: 10.1021/ja403318y

    38. [38]

      Kan, B.; Li, M.; Zhang, Q.; Liu, F.; Wan, X.; Wang, Y.; Ni, W.; Long, G.; Yang, X.; Feng, H.; et al. J. Am. Chem. Soc. 2015, 137, 3886. doi: 10.1021/jacs.5b00305  doi: 10.1021/jacs.5b00305

    39. [39]

      Xin, R.; Feng, J.; Zeng, C.; Jiang, W.; Zhang, L.; Meng, D.; Ren, Z.; Wang, Z.; Yan, S. ACS Appl. Mater. Interfaces 2017, 9, 2739. doi: 10.1021/acsami.6b13721  doi: 10.1021/acsami.6b13721

    40. [40]

      Liang, N.; Meng, D.; Ma, Z.; Kan, B.; Meng, X.; Zheng, Z.; Jiang, W.; Li, Y.; Wan, X.; Hou, J.; et al. Adv. Energy Mater. 2017, 7, 1601664. doi: 10.1002/aenm.201601664  doi: 10.1002/aenm.201601664

    41. [41]

      Lin, Y.; Wang, J.; Dai, S.; Li, Y.; Zhu, D.; Zhan, X. Adv. Energy Mater. 2014, 4, 1400420. doi: 10.1002/aenm.201400420  doi: 10.1002/aenm.201400420

    42. [42]

      Lin, Y.; Zhao, F.; Wu, Y.; Chen, K.; Xia, Y.; Li, G.; Prasad, S. K. K.; Zhu, J.; Huo, L.; Bin, H.; et al. Adv. Mater. 2017, 29, 1604155. doi: 10.1002/adma.201604155  doi: 10.1002/adma.201604155

    43. [43]

      Bin, H.; Yang, Y.; Zhang, Z.; Ye, L.; Ghasem, M.; Chen, S.; Zhang, Y.; Zhang, C.; Sun, C.; Xue, L.; et al. J. Am. Chem. Soc. 2017, 139, 5085. doi: 10.1021/jacs.6b12826  doi: 10.1021/jacs.6b12826

    44. [44]

      Qiu, B.; Xue, L.; Yang, Y.; Bin, H.; Zhang, Y.; Zhang, C.; Xiao, M.; Park, K.; Morrison, W.; Zhang, Z.; et al. Chem. Mater. 2017, 29, 7543. doi: 10.1021/acs.chemmater.7b02536  doi: 10.1021/acs.chemmater.7b02536

    45. [45]

      Zhao, W.; Qian, D.; Zhang, S.; Li, S.; Inganas, O.; Gao, F.; Hou, J. Adv. Mater. 2016, 28, 4734. doi: 10.1002/adma.201600281  doi: 10.1002/adma.201600281

    46. [46]

      Li, H.; Zhao, Y.; Fang, J.; Zhu, X.; Xia, B.; Lu, K.; Wang, Z.; Zhang, J.; Guo, X.; Wei, Z. Adv. Energy Mater. 2018, 1702377. doi: 10.1002/aenm.201702377  doi: 10.1002/aenm.201702377

    47. [47]

      Yang, L.; Zhang, S.; He, C.; Zhang, J.; Yao, H.; Yang, Y.; Zhang, Y.; Zhao, W.; Hou, J. J. Am. Chem. Soc. 2017, 139, 1958. doi: 10.1021/jacs.6b11612  doi: 10.1021/jacs.6b11612

    48. [48]

      Jia, G.; Zhang, S.; Yang, L.; He, C.; Fan, H.; Hou, J. Acta Phys. -Chim. Sin. 2018, in press.  doi: 10.3866/PKU.WHXB201712063

    49. [49]

      Zhang, S.; Yang, L.; Liu, D.; He, C.; Zhang, J.; Zhang, Y.; Hou, J. Sci. China Chem. 2017, 60, 1340. doi: 10.1007/s11426-017-9121-0  doi: 10.1007/s11426-017-9121-0

    50. [50]

      Badgujar, S.; Song, C. E.; Oh, S.; Shin, W. S.; Moon, S. J.; Lee, J. C.; Jung, I. H.; Lee, S. K. Highly efficient and thermally stable fullerene-free organic solar cells based on a small molecule donor and acceptor. J. Mater. Chem. A 2016, 4, 16335. doi: 10.1039/c6ta06367e  doi: 10.1039/c6ta06367e

    51. [51]

      Yang, L.; Zhang, S.; He, C.; Zhang, J.; Yang, Y.; Zhu, J.; Cui, Y.; Zhao, W.; Zhang, H.; Zhang, Y.; et al. Chem. Mater. 2018, 30, 2129. doi: 10.1021/acs.chemmater.8b00287  doi: 10.1021/acs.chemmater.8b00287

  • 加载中
    1. [1]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    2. [2]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    3. [3]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    4. [4]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    5. [5]

      Chao LiuHuan YuJiaming LiXi YuZhuangzhi YuYuxi SongFeng ZhangQinfang ZhangZhigang Zou . 具有光热效应的多级Ti3C2/Bi12O17Br2肖特基异质结简单合成及其太阳能驱动抗生素光降解的研究. Acta Physico-Chimica Sinica, 2025, 41(7): 100075-0. doi: 10.1016/j.actphy.2025.100075

    6. [6]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    7. [7]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    8. [8]

      Yixuan Gao Lingxing Zan Wenlin Zhang Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091

    9. [9]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    10. [10]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    11. [11]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    12. [12]

      Shuang CaoBo ZhongChuanbiao BieBei ChengFeiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    15. [15]

      Yipeng Zhou Chenxin Ran Zhongbin Wu . Metacognitive Enhancement in Diversifying Ideological and Political Education within Graduate Course: A Case Study on “Solar Cell Performance Enhancement Technology”. University Chemistry, 2024, 39(6): 151-159. doi: 10.3866/PKU.DXHX202312096

    16. [16]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    17. [17]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    18. [18]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    19. [19]

      Jizhou LiuChenbin AiChenrui HuBei ChengJianjun Zhang . Accelerated Interfacial Electron Transfer in Perovskite Solar Cell by Ammonium Hexachlorostannate Modification and fs-TAS Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-0. doi: 10.3866/PKU.WHXB202402006

    20. [20]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

Metrics
  • PDF Downloads(11)
  • Abstract views(1031)
  • HTML views(69)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return