Citation: DONG Dan, MIN Zhiyuan, LIU Jun, HE Gufeng. Improved Hole Injection Property of Solution-Processed MoO3 with[J]. Acta Physico-Chimica Sinica, ;2018, 34(11): 1286-1292. doi: 10.3866/PKU.WHXB201803222 shu

Improved Hole Injection Property of Solution-Processed MoO3 with

  • Corresponding author: HE Gufeng, gufenghe@sjtu.edu.cn
  • Received Date: 28 February 2018
    Revised Date: 19 March 2018
    Accepted Date: 19 March 2018
    Available Online: 22 November 2018

    Fund Project: The project was supported by the National Key R&D Program of China (2017YFB1002900)the National Key R&D Program of China 2017YFB1002900

  • The hole injection layer (HIL) plays a significant role in determining the performances of organic light-emitting diodes (OLEDs), especially when hole transport materials with deep highest occupied molecular orbital levels (HOMOs) are employed. Intensive efforts have been devoted to exploring novel hole injection materials with good solution-processing abilities in recent years. In this study, the solution-processed molybdenum trioxide (s-MoO3) is prepared via an ultra-facile method. Three different s-MoO3 layers prepared by three different methods, viz. layers annealed at 150 ℃ (s-MoO3 (150)), layers annealed at 150 ℃ and then processed in UV-ozone for 15 min (s-MoO3 (150, UVO)), and layers processed in UV-ozone for 15 min without annealing (s-MoO3 (UVO)), are obtained to investigate their influences on hole injection. The device with the s-MoO3 (150) layer has the lowest current density and the largest driving voltage, showing poor hole injection ability. In contrast, with the s-MoO3 (150, UVO) layer as HIL, the OLED produces a greatly enhanced current and sharply reduced driving voltage, comparable to the device using vacuum-evaporated MoO3. Similar results are obtained for the device with the s-MoO3 (UVO) film, suggesting that high-temperature annealing is not essential for the s-MoO3 film with UV-ozone treatment. Hole injection efficiencies of MoO3 films are quantitatively characterized by analyzing the space-charge-limited current of hole-only devices; the hole injection efficiencies of s-MoO3 (150, UVO) and s-MoO3 (UVO)-based devices are ~0.1, far exceeding that of the s-MoO3 (150)-based device (10−5). XPS analysis is performed to detect the impact of the above treatments on the surface electronic properties of the s-MoO3 films. A typical characteristic of Mo5+ species is obtained for the s-MoO3 (150) film and a high-binding-energy shoulder appears in the O 1s peak of the s-MoO3 (150) film, indicating the existence of oxygen vacancies and oxygen adsorbed at the surface of s-MoO3 (150) film. When UV-ozone treatment is applied to this s-MoO3 (150) film, it produces a decrease of Mo5+ state and elimination of oxygen-rich adsorbates, resulting in MoO3 stoichiometry similar to that of the vacuum-evaporated MoO3 film. Consequently, a maximum current efficiency of 48.3 cd∙A−1 is realized with the optimized UV-ozone treated s-MoO3 HIL. It This UV-ozone treated s-MoO3 should have widespread applications in low-cost solution-processed OLEDs as an excellent hole injection layer.
  • 加载中
    1. [1]

      Tang, C. W.; Vanslyke, S. A. Appl. Phys. Lett. 1987, 51, 913. doi: 10.1063/1.98799  doi: 10.1063/1.98799

    2. [2]

      Tang, C. W.; Vanslyke, S. A.; Chen, C. H. J. Appl. Phys. 1989, 65, 3610. doi: 10.1063/1.343409  doi: 10.1063/1.343409

    3. [3]

      Burroughes, J. H.; Bradely, D. D. C.; Brown, A. R.; Marks, R. N.; Mackay, K.; Friend, R. H.; Burn, P. L.; Holmes, A. B. Nature 1990, 347, 539. doi: 10.1038/347539a0  doi: 10.1038/347539a0

    4. [4]

      Lan, L. H.; Tao, T.; Li, M. L.; Gao, D. Y.; Zhou, J. H.; Xu, M.; Wang, L.; Peng, J. B. Acta Phys. -Chim. Sin. 2017, 33, 1548.  doi: 10.3866/PKU.WHXB201704283

    5. [5]

      Xiang, C.; Koo, W.; So, F.; Sasabe, H.; Kido, J. Light-Sci. Appl. 2013, 2, e74. doi: 10.1038/lsa.2013.30  doi: 10.1038/lsa.2013.30

    6. [6]

      Xu, T.; Yang, M. J.; Liu, J.; Wu, X. K.; Murtaza, I.; He, G. F.; Meng, H. Org. Electron. 2016, 37, 93. doi.10.1016/j.orgel.2016.06.014  doi: 10.1016/j.orgel.2016.06.014

    7. [7]

      Xu, T.; Zhang, Y. X.; Wang, B.; Huang, C. C.; Murtaza, I.; Meng, H.; Liao, L. S. ACS Appl. Mater. Interfaces 2017, 9, 2701. doi: 10.1021/acsami.6b13077  doi: 10.1021/acsami.6b13077

    8. [8]

      Wu, T. L.; Yeh, C. H.; Hsiao, W. T.; Huang, P. Y.; Huang, M. J.; Chiang, Y. H.; Cheng, C. H.; Liu, R. S.; Chiu, P. W. ACS Appl. Mater. Interfaces 2017, 9, 14998. doi: 10.1021/acsami.7b03597  doi: 10.1021/acsami.7b03597

    9. [9]

      D'Andrade, B. W.; Thompson, M. E.; Forrest, S. R. Adv. Mater. 2002, 14, 147. doi: 10.1002/1521-4095(20020116)14:2 < 147::aid-adma147 > 3.0.co; 2-3  doi: 10.1002/1521-4095(20020116)14:2<147::aid-adma147>3.0.co;2-3

    10. [10]

      Gather, M. C.; K hnen, A.; Meerholz, K. Adv. Mater. 2011, 23, 233. doi: 10.1002/adma.201002636  doi: 10.1002/adma.201002636

    11. [11]

      Huang, J.; Li, G.; Wu, E.; Xu, Q.; Yang, Y. Adv. Mater. 2006, 18, 114. doi: 10.1002/adma.200501105  doi: 10.1002/adma.200501105

    12. [12]

      Gevaerts, V. S.; Furlan, A.; Wienk, M. M.; Turbiez, M.; Janssen, R. A. J. Adv. Mater. 2012, 24, 2130. doi: 10.1002/adma.201104939  doi: 10.1002/adma.201104939

    13. [13]

      Small, C. E.; Tsang, S. W.; Kido, J.; So, S. K.; So, F. Adv. Funct. Mater. 2012, 22, 3261. doi: 10.1002/adfm.201200185  doi: 10.1002/adfm.201200185

    14. [14]

      Zhu, Y. W.; Yuan, Z. C.; Cui, W.; Wu, Z. W.; Sun, Q. J.; Wang, S. D.; Kang, Z. H.; Sun, B. Q. J. Mater. Chem. A 2014, 2, 1436. doi: 10.1039/c3ta13762g  doi: 10.1039/c3ta13762g

    15. [15]

      Helander, M. G.; Wang, Z. B.; Qiu, J.; Greiner, M. T.; Puzzo, D. P.; Lu, Z. H. Science 2011, 332, 944. doi: 10.1126/science.1202992  doi: 10.1126/science.1202992

    16. [16]

      Voroshazi, E.; Veneet, B.; Buri, A.; Muller, R.; Nuzzo, D. D.; Heremans, P. Org. Electron. 2011, 12, 736. doi: 10.1016/j.orgel.2011.01.025  doi: 10.1016/j.orgel.2011.01.025

    17. [17]

      Jorgensen, M.; Norrman, K.; Kreb, F. C. Sol. Energy Mater. Sol. Cells 2008, 92, 686. doi: 10.1016/j.solmat.2008.01.005  doi: 10.1016/j.solmat.2008.01.005

    18. [18]

      Kr ger, M.; Hamwi, S.; Meyer, J.; Riedl, T.; Kowalsky, W.; Kahn, A. Appl. Phys. Lett. 2009, 95, 123301. doi: 10.1063/1.3231928  doi: 10.1063/1.3231928

    19. [19]

      Liu, J.; Wu, X. K.; Chen, S.; Shi, X. D.; Wang, J.; Huang, S. J.; Guo, X. J.; He, G. F. J. Mater. Chem. C 2014, 2, 158. doi: 10.1039/c3tc31580k  doi: 10.1039/c3tc31580k

    20. [20]

      Xu, H.; Zhou, X. J. Appl. Phys. 2013, 114, 244505. doi: 10.1063/1.4852835  doi: 10.1063/1.4852835

    21. [21]

      Kim, C.; Nguyen, T. P.; Le, Q. V.; Jeon, J. M.; Jang, H. W.; Kim, S. Y. Adv. Funct. Mater. 2015, 25, 4512. doi: 10.1002/adfm.201501333  doi: 10.1002/adfm.201501333

    22. [22]

      Wong, K. H.; Ananthanarayanan, K.; Luther, J.; Balaya, P. J. Phys. Chem. C 2012, 116, 16346. doi: 10.1021/jp303679y  doi: 10.1021/jp303679y

    23. [23]

      Murase, S.; Yang, Y. Adv. Mater. 2012, 24, 2459. doi: 10.1002/adma.201104771  doi: 10.1002/adma.201104771

    24. [24]

      Hammond, S. R.; Meyer, J.; Widjonarko, N. E.; Ndione, P. F.; Sigdel, A. K.; Garcia, A.; Miedaner, A.; Lloyd, M. T.; Kahn, A.; Ginley, D. S.; et al. J. Mater. Chem. 2012, 22, 3249. doi: 10.1039/c2jm14911g  doi: 10.1039/c2jm14911g

    25. [25]

      Irfan, I.; Turinske, A. J.; Bao, Z.; Gao, Y. Appl. Phys. Lett. 2012, 101, 093305. doi: 10.1063/1.4748978  doi: 10.1063/1.4748978

    26. [26]

      Meyer, J.; Zilberberg, K.; Riedl, T.; Kahn, A. J. Appl. Phys. 2011, 110, 033710. doi: 10.1063/1.3611392  doi: 10.1063/1.3611392

    27. [27]

      Zilberberg, K.; Trost, S.; Schmidt, H.; Riedl, T. Adv. Energy Mater. 2011, 1, 377. doi: 10.1002/aenm.201100076  doi: 10.1002/aenm.201100076

    28. [28]

      Zilberberg, K.; Trost, S.; Meyer, J.; Kahn, A.; Behrendt, A.; Hecht, D. L.; Frahm, R.; Riedl, T. Adv. Funct. Mater. 2011, 21, 4776. doi: 10.1002/adfm.201101402  doi: 10.1002/adfm.201101402

    29. [29]

      Hancox, I.; Rochford, L. A.; Clare, D.; Walker, M.; Mudd, J. J.; Sullivan, P.; Schumann. S.; McConville, C. F.; Jones, T. S. J. Phys. Chem. C 2013, 117, 49. doi: 10.1021/jp3075767  doi: 10.1021/jp3075767

    30. [30]

      Ratcliff, E. L.; Meyer, J.; Steirer, K. X.; Garcia, A.; Berry, J. J.; Ginley, D. S.; Olson, D. C.; Kahn, A.; Armstrong, N. R. Chem. Mater. 2011, 23, 4988. doi: 10.1021/cm202296p  doi: 10.1021/cm202296p

    31. [31]

      Liu, S.; Liu, R.; Chen, Y.; Ho, S.; Kim, J. H.; So, F. Chem. Mater. 2014, 26, 4528. doi: 10.1021/cm501898y  doi: 10.1021/cm501898y

    32. [32]

      Meyer, J.; Khalandovsky, R.; G rrn, P.; Kahn, A. Adv. Mater. 2011, 23, 70. doi: 10.1002/adma.201003065  doi: 10.1002/adma.201003065

    33. [33]

      Sarma, D. D.; Rao, C. N. R. J. Electron. Spectrosc. Relat. Phenom. 1980, 20, 25. doi: 10.1016/0368-2048(80)85003-1  doi: 10.1016/0368-2048(80)85003-1

    34. [34]

      Kanai, K.; Koizumi, K.; Ouchi, S.; Tsukamoto, Y.; Sakanoue, K.; Ouchi, Y.; Seki, K. Org. Electron. 2010, 11, 188. doi: 10.1016/j.orgel.2009.10.013  doi: 10.1016/j.orgel.2009.10.013

    35. [35]

      Lee, H.; Cho, S. W.; Han, K.; Jeon, P. E.; Whang, C. N.; Jeong, K, Cho, K.; Yi, Y. Appl. Phys. Lett. 2008, 93, 43308. doi: 10.1063/1.2965120  doi: 10.1063/1.2965120

    36. [36]

      Murgatroyd, P. N. J. Phys. D: Appl. Phys. 1970, 3, 151. doi: 10.1088/0022-3727/3/2/308  doi: 10.1088/0022-3727/3/2/308

    37. [37]

      Cai, M.; Xiao, T.; Hellerich, E.; Chen, Y.; Shinar, R.; Shinar, J. Adv. Mater. 2011, 23, 3590. doi: 10.1002/adma.201101154  doi: 10.1002/adma.201101154

  • 加载中
    1. [1]

      Haowen ShangYujie YangBingjie XueYikai WangZhiyi SuWenlong LiuYouzhi WuXinjun Xu . Efficient solution-processed near-infrared organic light-emitting diodes with a binary-mixed electron transport layer. Chinese Chemical Letters, 2025, 36(4): 110511-. doi: 10.1016/j.cclet.2024.110511

    2. [2]

      Zehua ZhangHaitao YuYanyu Qi . Design Strategy for Thermally Activated Delayed Fluorescence Materials with Multiple Resonance Effect. Acta Physico-Chimica Sinica, 2025, 41(1): 100006-0. doi: 10.3866/PKU.WHXB202309042

    3. [3]

      Xinbao TongJiaying LiuYanqi ZhaoJingjun LiYe TianQingyi LiuShuiying GaoRong Cao . Metal-organic framework supported carbon quantum dots as white light-emitting phosphor. Chinese Chemical Letters, 2025, 36(7): 111058-. doi: 10.1016/j.cclet.2025.111058

    4. [4]

      Yuan LiuBoyang WangYaxin LiWeidong LiSiyu Lu . Understanding excitonic behavior and electroluminescence light emitting diode application of carbon dots. Chinese Chemical Letters, 2025, 36(2): 110426-. doi: 10.1016/j.cclet.2024.110426

    5. [5]

      Xiangan SongShaogang ShenMengyao LuYing WangYong Zhang . Trifluoromethyl enable high-performance single-emitter white organic light-emitting devices based on quinazoline acceptor. Chinese Chemical Letters, 2024, 35(4): 109118-. doi: 10.1016/j.cclet.2023.109118

    6. [6]

      Hao ZhuoMing ZhangHengyuan ZhangHui LinGang YangSilu TaoCaijun ZhengXiaohong Zhang . Modified triphenylamine donors with shallower HOMO energy levels to construct long-wavelength TADF emitters of efficient organic light-emitting diodes. Chinese Chemical Letters, 2025, 36(5): 110760-. doi: 10.1016/j.cclet.2024.110760

    7. [7]

      Hui PengXiao WangWeiguo HuangShuiyue YuLinghang KongQilin WeiJialong ZhaoBingsuo Zou . Efficient tunable visible and near-infrared emission in Sb3+/Sm3+-codoped Cs2NaLuCl6 for near-infrared light-emitting diode, triple-mode fluorescence anti-counterfeiting and information encryption. Chinese Chemical Letters, 2024, 35(11): 109462-. doi: 10.1016/j.cclet.2023.109462

    8. [8]

      Fengrui YangDebing WangXinying ZhangJie ZhangZhichao WuQiaoying Wang . Synergistic effects of peroxydisulfate on UV/O3 process for tetracycline degradation: Mechanism and pathways. Chinese Chemical Letters, 2024, 35(10): 109599-. doi: 10.1016/j.cclet.2024.109599

    9. [9]

      Yanrui Liu Paramaguru Ganesan Peng Gao . Harnessing d-f transition rare earth complexes for single layer white organic light emitting diodes. Chinese Journal of Structural Chemistry, 2024, 43(9): 100369-100369. doi: 10.1016/j.cjsc.2024.100369

    10. [10]

      Kangrong YanZiqiu ShenYanchun HuangBenfang NiuHongzheng ChenChang-Zhi Li . Curing the vulnerable heterointerface via organic-inorganic hybrid hole transporting bilayers for efficient inverted perovskite solar cells. Chinese Chemical Letters, 2024, 35(6): 109516-. doi: 10.1016/j.cclet.2024.109516

    11. [11]

      Hao CaiXiaoyan WuLei JiangFeng YuYuxiang YangYan LiXian ZhangJian LiuZijian LiHong Bi . Lysosome-targeted carbon dots with a light-controlled nitric oxide releasing property for enhanced photodynamic therapy. Chinese Chemical Letters, 2024, 35(4): 108946-. doi: 10.1016/j.cclet.2023.108946

    12. [12]

      Di AnMingdong SheZiyang ZhangTing ZhangMiaomiao XuJinjun ShaoQian ShenXuna Tang . Light-responsive nanomaterials for biofilm removal in root canal treatment. Chinese Chemical Letters, 2025, 36(2): 109841-. doi: 10.1016/j.cclet.2024.109841

    13. [13]

      Pu ZhangXiang MaoXuehua DongLing HuangLiling CaoDaojiang GaoGuohong Zou . Two UV organic-inorganic hybrid antimony-based materials with superior optical performance derived from cation-anion synergetic interactions. Chinese Chemical Letters, 2024, 35(9): 109235-. doi: 10.1016/j.cclet.2023.109235

    14. [14]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    15. [15]

      Linshan PengQihang PengTianxiang JinZhirong LiuYong Qian . Highly efficient capture of thorium ion by citric acid-modified chitosan gels from aqueous solution. Chinese Chemical Letters, 2024, 35(5): 108891-. doi: 10.1016/j.cclet.2023.108891

    16. [16]

      Xiaobo LiQunyan WuCongzhi WangJianhui LanMeng ZhangWeiqun Shi . Theoretical perspectives on the reduction of Pu(Ⅳ) and Np(Ⅵ) by methylhydrazine in HNO3 solution: Implications for Np/Pu separation. Chinese Chemical Letters, 2024, 35(7): 109359-. doi: 10.1016/j.cclet.2023.109359

    17. [17]

      Zheng Zhao Ben Zhong Tang . An efficient strategy enabling solution processable thermally activated delayed fluorescence emitter with high horizontal dipole orientation. Chinese Journal of Structural Chemistry, 2024, 43(6): 100270-100270. doi: 10.1016/j.cjsc.2024.100270

    18. [18]

      Qian RenXue DaiRan CenYang LuoMingyang LiZiyun ZhangQinghong BaiZhu TaoXin Xiao . A cucurbit[8]uril-based supramolecular phosphorescent assembly: Cell imaging and sensing of amino acids in aqueous solution. Chinese Chemical Letters, 2024, 35(12): 110022-. doi: 10.1016/j.cclet.2024.110022

    19. [19]

      Feifei WangHang YaoXinyue WuYijian TangYang BaiHui ChongHuan Pang . Metal–organic framework and its composites modulate macrophage polarization in the treatment of inflammatory diseases. Chinese Chemical Letters, 2024, 35(5): 108821-. doi: 10.1016/j.cclet.2023.108821

    20. [20]

      Yuqing DingZhiying YiZhihui WangHongyu ChenYan Zhao . Liquid nitrogen post-treatment for improved aggregation and electrical properties in organic semiconductors. Chinese Chemical Letters, 2024, 35(12): 109918-. doi: 10.1016/j.cclet.2024.109918

Metrics
  • PDF Downloads(16)
  • Abstract views(1446)
  • HTML views(256)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return