Citation: Yang YANG, JIANG Xiu, ZHAN Xiaowei, CHEN Xingguo. Designing an Organic Acceptor with Unsymmetrical Structure Based on Rhodanine and Thiazolidine-2, 4-dione Units to Study the Structure–Property Relationship[J]. Acta Physico-Chimica Sinica, ;2019, 35(3): 257-267. doi: 10.3866/PKU.WHXB201803191 shu

Designing an Organic Acceptor with Unsymmetrical Structure Based on Rhodanine and Thiazolidine-2, 4-dione Units to Study the Structure–Property Relationship

  • Corresponding author: ZHAN Xiaowei, xwzhan@pku.edu.cn CHEN Xingguo, xgchen@whu.edu.cn
  • Received Date: 1 February 2018
    Revised Date: 14 March 2018
    Accepted Date: 15 March 2018
    Available Online: 19 March 2018

    Fund Project: the National Natural Science Foundation of China 51173138The project was supported by the National Natural Science Foundation of China (51173138)

  • As reported previously, rhodanine and thiazolidine-2, 4-dione units have been widely used as the terminal group to construct the efficient non-fullerene small molecular acceptors with the structure of A1-A2-D-A2-A1. Compared with the acceptor using thiazolidine-2, 4-dione unit as the terminal group, the acceptor with rhodanine unit as the terminal electron-withdrawing group usually showed the improved short circuit current density (Jsc) and fill factor (FF) as well as the higher power conversion efficiency (PCE), regardless of the lower open circuit voltage (Voc). However, the causes of difference are still not very clear. Therefore, in this work, an unsymmetrical organic acceptor (IDT-2) has been designed and synthesized with rhodanine and thiazolidine- 2, 4-dione units as the electron-withdrawing terminal groups to connect an indacenodithiophene (IDT) central core, respectively. By comparing with the two analogues of the symmetrical organic acceptors based on rhodamine unit (IDT-1) or thiazolidine-2, 4-dione unit (IDT-3) as the terminal group, the structure-property relationship has been investigated for this series of acceptors. It is found that as two rhodamine terminal groups are replaced step by step with the thiazolidine-2, 4-dione unit from IDT-1 to IDT-3, the ICT absorption of these small molecular acceptors is significantly blue-shifted from 633 (soln)/656 (film), 618/645 to 603/625 nm, and the corresponding optical band gap (Egopt) is also gradually widened from 1.68, 1.71 to 1.77 eV for IDT-1, IDT-2 and IDT-3, respectively, which can be attributed to the introduction of thiazolidine-2, 4-dione unit to reduce the stability of quinoid structure of the conjugation backbone. At the same time, the LUMO/HOMO (the lowest unoccupied molecular orbital/the highest occupied molecular orbital) energy levels of the molecules are gradually uplifted to be -3.62/-5.58, -3.60/-5.56, and -3.57/-5.53 eV, respectively, which is generally beneficial for the improvement of the Voc due to the upshifted LUMO energy levels of the acceptors. Considering the complementary absorption and well-matched energy levels of the donor and acceptor, the regioregular poly(3-hexylthiophene) (P3HT) has been chosen as a donor to fabricate the devices with three small molecular acceptors, respectively, and the corresponding photovoltaic performances have been evaluated and compared. The device based on IDT-1 with two rhodamine terminal groups gives the best PCE of 4.52% with the lowest Voc of 0.87 V, the highest FF of 70.66% and Jsc of 7.37 mA·cm-2, while the device based on IDT-3 with two thiazolidine-2, 4-dione terminal groups shows the poorest PCE of 3.40% with the highest Voc of 0.98 V but the lowest FF of 59.70% and Jsc of 5.82 mA·cm-2. As for IDT-2 with an unsymmetrical structure, it contains a thiazolidine-2, 4-dione terminal group and a rhodamine terminal group at the two sides of the molecule. It can be seen that the IDT-2 based device just shows a PCE of 4.07% with a Voc of 0.91 V, a FF of 64.65% and a Jsc of 6.81 mA·cm-2, all of which are between those of the devices based on IDT-1 and IDT-3. These results indicate that the thiazolidine-2, 4-dione unit is an effective terminal group to enhance the Voc of the device but is not beneficial to the improvement of the Jsc and FF. Furthermore, when designing the structure of the acceptors, it is very important to maintain the balance of all the three parameters to maximize the PCE in the OSCs.
  • 加载中
    1. [1]

      Li, Y. Acc. Chem. Res. 2012, 45, 723. doi: 10.1021/ar2002446  doi: 10.1021/ar2002446

    2. [2]

      Lin, Y.; Li, Y.; Zhan, X. Chem. Soc. Rev. 2012, 41, 4245. doi: 10.1039/c2cs15313k  doi: 10.1039/c2cs15313k

    3. [3]

      He, Z.; Wu, H.; Cao, Y. Adv. Mater. 2013, 26, 1006. doi: 10.1002/adma.201303391  doi: 10.1002/adma.201303391

    4. [4]

      Fu, Y.; Wang, F.; Zhang, Y.; Fang, X.; Lai, W. Y.; Huang, W. Acta Chim. Sin. 2014, 72, 158.  doi: 10.6023/A13111142

    5. [5]

      Li, G.; Zhu, R.; Yang, Y. Nat. Photon. 2012, 6, 153. doi: 10.1038/nphoton.2012.11  doi: 10.1038/nphoton.2012.11

    6. [6]

      Lin, Y.; Wang, J.; Zhang, Z. G.; Bai, H.; Li, Y.; Zhu, D.; Zhan, X. Adv. Mater. 2015, 27, 1170. doi: 10.1002/adma.201404317  doi: 10.1002/adma.201404317

    7. [7]

      Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A. K. Y.; Marder, S. R.; Zhan, X. Nat. Rev. Mater. 2018, 3, 18003. doi:10.1038/natrevmats.2018.3  doi: 10.1038/natrevmats.2018.3

    8. [8]

      Dai, S.; Zhan, X. Acta Polym. Sin. 2017, 11, 1706.  doi: 10.11777/j.issn1000-3304.2017.17214

    9. [9]

      Wang, W.; Yan, C.; Lau, T. K.; Wang, J.; Liu, K.; Fan, Y.; Lu, X.; Zhan, X. Adv. Mater. 2017, 29, 1701308. doi: 10.1002/adma.201701308  doi: 10.1002/adma.201701308

    10. [10]

      Zhu, J.; Ke, Z.; Zhang, Q.; Wang, J.; Dai, S.; Wu, Y.; Xu, Y.; Lin, Y.; Ma, W.; You, W.; et al. Adv. Mater. 2018, 30, 1704713. doi: 10.1002/adma.201704713  doi: 10.1002/adma.201704713

    11. [11]

      Wang, J.; Wang, W.; Wang, X.; Wu, Y.; Zhang, Q.; Yan, C.; Ma, W.; You, W.; Zhan, X. Adv. Mater. 2017, 29, 1702125. doi: 10.1002/adma.201702125  doi: 10.1002/adma.201702125

    12. [12]

      Zhao, W.; Li, S.; Yao, H.; Zhang, S.; Zhang, Y.; Yang, B.; Hou, J. J. Am. Chem. Soc. 2017, 139, 7148. doi: 10.1021/jacs.7b02677  doi: 10.1021/jacs.7b02677

    13. [13]

      Zhang, S. Q.; Hou, J. H. Acta Phys. -Chim. Sin. 2017, 33, 2327.  doi: 10.3866/PKU.WHXB201706161

    14. [14]

      Po, R.; Bernardi, A.; Calabrese, A.; Carbonera, C.; Corso, G.; Pellegrino, A. Energy Environ. Sci. 2014, 7, 925. doi: 10.1039/c3ee43460e  doi: 10.1039/c3ee43460e

    15. [15]

      Espinosa, N.; Hosel, M.; Jørgensen, M.; Krebs, F. C. Energy Environ. Sci. 2014, 7, 855. doi: 10.1039/c3ee43212b  doi: 10.1039/c3ee43212b

    16. [16]

      Holliday, S.; Ashraf, R. S.; Wadsworth, A.; Baran, D.; Yousaf, S. A.; Nielsen, C. B.; Tan, C. H.; Dimitrov, S. D.; Shang, Z.; Gasparini, N.; et al. Nat. Commun. 2016, 7, 11585. doi: 10.1038/ncomms11585  doi: 10.1038/ncomms11585

    17. [17]

      Li, S.; Liu, W.; Shi, M.; Mai, J.; Lau, T. K.; Wan, J.; Lu, X.; Li, C. Z.; Chen, H. Energy Environ. Sci. 2016, 9, 604. doi: 10.1039/c5ee03481g  doi: 10.1039/c5ee03481g

    18. [18]

      Qiu, N.; Yang, X.; Zhang, H.; Wan, X.; Li, C.; Liu, F.; Zhang, H.; Russell, T. P.; Chen, Y. Chem. Mater. 2016, 28, 6770. doi: 10.1021/acs.chemmater.6b03323  doi: 10.1021/acs.chemmater.6b03323

    19. [19]

      Wu, Y.; Bai, H.; Wang, Z.; Cheng, P.; Zhu, S.; Wang, Y.; Ma, W.; Zhan, X. Energy Environ. Sci. 2015, 8, 3215. doi: 10.1039/C5EE02477C  doi: 10.1039/C5EE02477C

    20. [20]

      Baran, D.; Ashraf, R. S.; Hanifi, D. A.; Abdelsamie, M.; Gasparini, N.; R.hr, J. A.; Holliday, S.; Wadsworth, A.; Lockett, S.; Neophytou, M.; et al. Nat. Mater. 2017, 16, 363. doi: 10.1038/NMAT4797  doi: 10.1038/NMAT4797

    21. [21]

      Xiao, B.; Tang, A.; Zhang, J.; Mahmood, A.; Wei, Z.; Zhou, E. Adv. Energy Mater. 2017, 7, 1602269. doi:10.1002/aenm.201602269  doi: 10.1002/aenm.201602269

    22. [22]

      Cheng, Y. J.; Luo, J. D.; Huang, S.; Zhou, X. H.; Shi, Z. W.; Kim, T. D.; Bale, D. H.; Takahashi, S.; Yick, A.; Polishak, B. M.; et al. Chem. Mater. 2008, 20, 5047. doi: 10.1021/cm801097k  doi: 10.1021/cm801097k

    23. [23]

      Cui, C.; Wong, W. Y.; Li, Y. Energy Environ. Sci. 2014, 7, 2276. doi: 10.1039/c4ee00446a  doi: 10.1039/c4ee00446a

    24. [24]

      Xiao, B.; Tang, A.; Yang, J.; Wei, Z.; Zhou, E. ACS Macro Lett. 2017, 6, 410. doi: 10.1021/acsmacrolett.7b00097  doi: 10.1021/acsmacrolett.7b00097

    25. [25]

      Xiao, B.; Tang, A.; Cheng, L.; Zhang, J.; Wei, Z.; Zeng, Q.; Zhou, E. Sol. RRL 2017, 1, 1700166. doi:10.1002/solr.201700166  doi: 10.1002/solr.201700166

    26. [26]

      Huo, L.; Liu, T.; Sun, X.; Cai, Y.; Heeger, A. J.; Sun, Y. Adv. Mater. 2015, 27, 2938, doi: 10.1002/adma.201500647  doi: 10.1002/adma.201500647

    27. [27]

      Yao, H.; Ye, L.; Hou, J.; Jang, B.; Han, G.; Cui, Y.; Su, G. M.; Wang, C.; Gao, B.; Yu, R.; et al. Adv. Mater. 2017, 29, 1700254. doi: 10.1002/adma.201700254  doi: 10.1002/adma.201700254

    28. [28]

      (a) Lu, L. ; Zheng, T. ; Wu, Q. ; Schneider, A. M. ; Zhao, D. ; Yu, L. Chem. Rev. 2015, 115, 12666. doi: 10.1021/acs.chemrev.5b00098
      (b) Zhou, P. ; Zhang, Z. G. ; Li, Y. ; Chen, X. ; Qin, J. Chem. Mater. 2014, 26, 3495. doi: 10.1021/cm501052a

    29. [29]

      Blom, P. W. M.; Mihailetchi, V. D.; Koster, L. J. A.; Markov, D. E. Adv. Mater. 2007, 19, 1551. doi: 10.1002/adma.200601093  doi: 10.1002/adma.200601093

    30. [30]

      Cheng, P.; Zhao, X.; Zhou, W.; Hou, J.; Li, Y.; Zhan, X. Org. Electron. 2014, 15, 2270. doi: 10.1016/j.orgel.2014.06.025  doi: 10.1016/j.orgel.2014.06.025

    31. [31]

      Han, J.; Liang, Q. J.; Qu, Y.; Liu, J. G.; Han, Y. C. Acta Phys. -Chim. Sin. 2018, 34, 391.  doi: 10.3866/PKU.WHXB201709131

  • 加载中
    1. [1]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    3. [3]

      Shuixing Dai Jilei Jiang Yuxiao Wang Jinqi Hu Minghua Huang . Application of Knoevenagel Reaction in Organic Chemistry Teaching. University Chemistry, 2025, 40(5): 334-341. doi: 10.12461/PKU.DXHX202405208

    4. [4]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    8. [8]

      Jiashuang Lu Xiaoyang Xu Youqing He Mingyue Wu Ruixin Shi Wenfang Yu Hang Lu Ji Liu Qingzeng Zhu . 生命健康中的有机硅高分子. University Chemistry, 2025, 40(8): 169-180. doi: 10.12461/PKU.DXHX202409143

    9. [9]

      Yi DINGPeiyu LIAOJianhua JIAMingliang TONG . Structure and photoluminescence modulation of silver(Ⅰ)-tetra(pyridin-4-yl)ethene metal-organic frameworks by substituted benzoates. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 141-148. doi: 10.11862/CJIC.20240393

    10. [10]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    11. [11]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    12. [12]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    13. [13]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    14. [14]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    15. [15]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    16. [16]

      Ying LiangYuheng DengShilv YuJiahao ChengJiawei SongJun YaoYichen YangWanlei ZhangWenjing ZhouXin ZhangWenjian ShenGuijie LiangBin LiYong PengRun HuWangnan Li . Machine learning-guided antireflection coatings architectures and interface modification for synergistically optimizing efficient and stable perovskite solar cells. Acta Physico-Chimica Sinica, 2025, 41(9): 100098-0. doi: 10.1016/j.actphy.2025.100098

    17. [17]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    18. [18]

      Zeyuan WANGSongzhi ZHENGHao LIJingbo WENGWei WANGYang WANGWeihai SUN . Effect of I2 interface modification engineering on the performance of all-inorganic CsPbBr3 perovskite solar cells. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1290-1300. doi: 10.11862/CJIC.20240021

    19. [19]

      Xiaoyao YINWenhao ZHUPuyao SHIZongsheng LIYichao WANGNengmin ZHUYang WANGWeihai SUN . Fabrication of all-inorganic CsPbBr3 perovskite solar cells with SnCl2 interface modification. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 469-479. doi: 10.11862/CJIC.20240309

    20. [20]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

Metrics
  • PDF Downloads(4)
  • Abstract views(448)
  • HTML views(34)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return