Citation: LEI Qun, ZHANG Yurong, LUO Jianhui, HAN Rongcheng, GENG Xiangfei, Lü Xiaodong, LIU Yan, WANG Yuan. Method for Evaluating Stability of Highly Concentrated Emulsion and Its Application[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 415-421. doi: 10.3866/PKU.WHXB201803141 shu

Method for Evaluating Stability of Highly Concentrated Emulsion and Its Application

  • Corresponding author: WANG Yuan, wangy@pku.edu.cn
  • Received Date: 11 February 2018
    Revised Date: 7 March 2018
    Accepted Date: 7 March 2018
    Available Online: 14 April 2018

    Fund Project: the PetroChina Scientific Research and Technology Development Project 2014A-1001The project was supported by the PetroChina Scientific Research and Technology Development Project (2014A-1001) and the National Key Research and Development Program of China (2016YFE0118700)the National Key Research and Development Program of China 2016YFE0118700

  • The average diameter and size distribution of dispersed-phase droplets are important factors affecting the properties of emulsions, and the changes in these parameters with time and environment can be used to evaluate the emulsion stability. Traditional size characterization methods such as dynamic light scattering (DLS) are not applicable to highly concentrated emulsions. Herein, we report an imaging-based method to measure the droplet size in highly concentrated emulsions. This method comprises three steps: 1) emulsions are labeled with a fluorescent dye, 2) three optical slices with a certain distance between two adjacent focal plans are measured sequentially via confocal laser scanning microscopy, 3) the sizes of dispersed-phase droplets are determined from the apparent diameters of droplets in the optical slices. When the apparent diameter of a droplet in the three optical slices increases or decreases monotonically, droplet diameter is calculated according to the following equations: DC1–2 = {D22 +[(D12D22)/4δz + δz]2}1/2 or DC2–3 = {D32 + [(D22D32)/4δz + δz]2}1/2, where D1, D2, D3 is the apparent diameter of the droplet measured from the consecutively-obtained optical slices 1−3, respectively; DC1–2 represents the calculated diameter of the droplet from the slices 1 and 2, and DC2–3 is that from the slices 2 and 3, and δz is the distance between two focal planes of the adjacent optical slices. To avoid an obvious interference from the droplet movement, we use the equation 2|DC1–2DC2–3|/(DC1–2 + DC2–3) = X, where a smaller X value indicates a less extent of movement during measurement, and that the calculated average diameter (DC1–2 + DC2–3)/2 is closer to the measured size of the droplet. The experimental results showed that when X was 15%, the difference between the calculated and measured diameters was about 10%. When X was less than 15%, the calculated average droplet diameter was adopted as an effective diameter. However, when the condition D1= D2D3 (or D3 = D2D1) was met, D2 was used as the effective droplet diameter. The present method combines the advantages of fluorescent labeling, double optical slices analysis, and a strategy for eliminating the error caused by droplet movement. The stability of highly concentrated emulsions (oil volume percentage: 60%−80%), prepared by mixing a crude oil model mixture containing n-decane, naphthaline, decalin, and tetraphenylporphyrin (92.3%, 4.1%, 3.6%, and 0.1‰ by mass, respectively) with aqueous solutions containing surfactants, was studied with the proposed method. The experimental results indicated that the present method allowed for the effective and accurate measurement of the anti-coalescence stability of emulsion dispersed-phase droplets. In contrast, the widely adopted "bottle test" method could not provide accurate information on the anti-coalescence stability of the dispersed phase droplets.
  • 加载中
    1. [1]

      Wong, S. F.; Lim, J. S.; Dol, S. S. J. Pet. Sci. Eng. 2015, 135, 498. doi: 10.1016/j.petrol.2015.10.006  doi: 10.1016/j.petrol.2015.10.006

    2. [2]

      Tadros, T. F. Applied Surfactants: Principles and Applications; Wiley-VCH: Weinheim, 2005; pp. 139–140.

    3. [3]

      Zhang, X. G.; Liu, J. X.; Wang, H. Y.; Wang, M. Y.; Fan, Z. J. Acta Phys. -Chim. Sin. 2010, 26 (3), 617.  doi: 10.3866/PKU.WHXB20100313

    4. [4]

      Martínez-Palou, R.; Cerón-Camacho, R.; Chávez, B.; Vallejo, A. A.; Villanueva-Negrete, D.; Castellanos, J.; Karamath, J.; Reyes, J.; Aburto, J. Fuel2013, 113, 407. doi: 10.1016/j.fuel.2013.05.094  doi: 10.1016/j.fuel.2013.05.094

    5. [5]

      da Fraga, A. K.; Oliveira, P. F.; Oliveira, L. F. S.; Magalhães, J.; Mansur, C. R. E. J. Appl. Polym. Sci. 2016, 133 (44), 44174 doi: 10.1002/app.44174  doi: 10.1002/app.44174

    6. [6]

      Jing, J. Q.; Sun, J.; Zhou, J.; Shen, X. Y.; Tan, J. T.; Li, X. M.; Zhang, L. P. J. Dispersion Sci. Technol. 2016, 37 (7), 980. doi: 10.1080/01932691.2015.1077454  doi: 10.1080/01932691.2015.1077454

    7. [7]

      Santos, D.; da Rocha, E. C. L.; Santos, R. L. M.; Cancelas, A. J.; Franceschi, E.; Santos, A. F.; Fortuny, M.; Dariva, C. Sep. Purif. Technol.2017, 189, 347. doi: 10.1016/j.seppur.2017.08.028  doi: 10.1016/j.seppur.2017.08.028

    8. [8]

      Less, S.; Vilagines, R. Fuel 2013, 109, 542. doi: 10.1016/j.fuel.2013.03.048  doi: 10.1016/j.fuel.2013.03.048

    9. [9]

      Koppel, D. E. J. Chem. Phys. 1972, 57, 4814. doi: 10.1063/1.1678153  doi: 10.1063/1.1678153

    10. [10]

      Zhang, L. F.; Ying, H.; Yan, S.; Zhan, N. N.; Guo, Y. S.; Fang, W. J. Fuel 2018, 211, 197. doi: 10.1016/j.fuel.2017.09.066  doi: 10.1016/j.fuel.2017.09.066

    11. [11]

      Xiang, N.; Lyu, Y.; Naesimhan, G. Food Hydrocolloids 2016, 52, 678. doi: 10.1016/j.foodhyd.2015.08.015  doi: 10.1016/j.foodhyd.2015.08.015

    12. [12]

      Philips, L. A.; Ruffner, D. B.; Cheong, F. C.; Blusewicz, J. M.; Kasimbeg, P.; Waisi, B.; McCutcheon, J. R.; Grier, D. G. Water Res. 2017, 122, 431. doi: 10.1016/j.watres. 2017.06.006  doi: 10.1016/j.watres.2017.06.006

    13. [13]

      Chen, F.; Chen, Z. G.; Sun, H. Z.; Meng, F. X.; Ma, X. Y. Acta Phys.-Chim. Sin. 2016, 32(3), 763.  doi: 10.3866/PKU.WHXB201512111

    14. [14]

      Boxall, J. A.; Koh, C. A.; Sloan, E. D.; Sum, A. K.; Wu, D. T. Ind. Eng. Chem. Res. 2010, 49(3), 1412. doi: 10.1021/ie901228e

    15. [15]

      Greaves, D.; Boxall, J.; Mulligan, J.; Montesi, A.; Creek, J.; Sloan, E. D.; Koh, C. A. Chem. Eng. Sci. 2008, 63 (22), 5410. doi: 10.1016/j.ces.2008.07.023  doi: 10.1016/j.ces.2008.07.023

    16. [16]

      Muhaimin; Bodmeier, R. Polym. Int. 2017, 66(11), 1448. doi: 10.1002/pi.5436  doi: 10.1002/pi.5436

    17. [17]

      Hermanto, M. W.; Chow, P. S.; Tan, R. B. H. Cryst. Growth Des.2010, 10, 3668. doi: 10.1021/cg100533n  doi: 10.1021/cg100533n

    18. [18]

      Dave, K.; Luner, P. E.; Forness, C.; Baker, D.; Jankovsky, C.; Chen, S. AAPS PharmSciTech 2017, 19(1), 155. doi: 10.1208/s12249-017-0819-9  doi: 10.1208/s12249-017-0819-9

    19. [19]

      Katepalli, H.; Bose, A.; Hatton, T. A.; Blankschtein, D. Langmuir2016, 32, 10694. doi: 10.1021/acs.langmuir. 6b03289  doi: 10.1021/acs.langmuir.6b03289

    20. [20]

      Anjali, T. G.; Basavaraj, M. G. Phys. Chem. Chem. Phys. 2017, 19, 30790. doi: 10.1039/C7CP04665K  doi: 10.1039/C7CP04665K

    21. [21]

      Ruf, A.; Worlitschek, J.; Mazzotti, M. Part. Part. Syst. Charact.2000, 17, 167. doi: 10.1002/1521-4117(200012)17:4 < 167::AID-PPSC167 > 3.0.CO; 2-T  doi: 10.1002/1521-4117(200012)17:4<167::AID-PPSC167>3.0.CO;2-T

    22. [22]

      Abidin, M. I. I. Z.; Raman, A. A. A.; Nor, M. I. M. Ind. Eng. Chem. Res. 2013, 52, 16085. doi: 10.1021/ie401548z  doi: 10.1021/ie401548z

    23. [23]

      Amos, W. B.; White, J. G. Biol. Cell 2003, 95, 335. doi: 10.1016/S0248-4900(03)00078-9  doi: 10.1016/S0248-4900(03)00078-9

    24. [24]

      Mun, S.; Kim, J.; McClements, D. J.; Kim, Y. R.; Choi, Y. Food Chem.2017, 219, 297. doi: 10.1016/j.foodchem.2016. 09.158  doi: 10.1016/j.foodchem.2016.09.158

    25. [25]

      Iwai, M.; Yokono, M.; Kurokawa, K.; Ichihara, A.; Nakano, A. Sci. Rep. 2016, 6, 29940. doi: 10.1038/srep29940  doi: 10.1038/srep29940

    26. [26]

      Villaseñor, R.; Collin, L. J. Vis. Exp. 2017, 129, 1. doi: 10.3791/56407  doi: 10.3791/56407

    27. [27]

      Paddock, S. W. Biotechniques 1999, 27, 992.

    28. [28]

      Carlsson, K.; Danielsson, P. E.; Liljeborg, A.; Majlöf, L.; Lenz, R.; Åslund, N. Opt. Lett. 1985, 10, 53. doi: 10.1364/OL.10.000053  doi: 10.1364/OL.10.000053

  • 加载中
    1. [1]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    2. [2]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    3. [3]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    6. [6]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    7. [7]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    8. [8]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    9. [9]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    10. [10]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    11. [11]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    12. [12]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    13. [13]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    14. [14]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    15. [15]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    16. [16]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    17. [17]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    18. [18]

      Daming Zhang Zhiwei Niu Qiang Jin Zongyuan Chen Zhijun Guo . Eu(III)-硅酸盐胶体的制备与稳定性研究——一个由科研成果转化的放射化学综合实验的设计. University Chemistry, 2025, 40(6): 183-192. doi: 10.12461/PKU.DXHX202408058

    19. [19]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    20. [20]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

Metrics
  • PDF Downloads(11)
  • Abstract views(1003)
  • HTML views(278)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return