Citation: DUAN Yuan, CHEN Mingshu, WAN Huilin. Adsorption and Activation of O2 and CO on the Ni(111) Surface[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1358-1365. doi: 10.3866/PKU.WHXB201803071 shu

Adsorption and Activation of O2 and CO on the Ni(111) Surface

  • Corresponding author: CHEN Mingshu, chenms@xmu.edu.cn
  • Received Date: 4 February 2018
    Revised Date: 1 March 2018
    Accepted Date: 2 March 2018
    Available Online: 7 December 2018

    Fund Project: the National Natural Science Foundation of China 21073149The project was supported by the National Natural Science Foundation of China (21073149, 21573180, 91545204)the National Natural Science Foundation of China 91545204the National Natural Science Foundation of China 21573180

  • Ni-based catalysts have been widely used in many important industrial heterogeneous processes such as hydrogenation and steam reforming owing to their sufficiently high activity yet significantly lower cost than that of alternative precious-metal-based catalysts. However, nickel catalysts are susceptible to deactivation. Understanding the adsorption and activation behavior of small molecules on the model catalyst surface is important to optimize the catalytic performance. Although many studies have been carried out in recent years, the initial oxidation process of nickel surface is still not fully understood, and the influence of the adsorption sequence of CO and O2 and their co-adsorption is controversial. In this study, the surface oxygen species on Ni(111) and the co-adsorption of CO and O2 were explored using high-resolution electron energy loss spectroscopy (HREELS), Auger electron spectroscopy (AES), and low energy electron diffraction (LEED). HREELS can provide useful information about the surface structure, surface-adsorbed species, adsorption sites, and interactions between surface oxygen species and CO on the surface. The results showed that there were two kinds of oxygen species after the oxidation of Ni(111), and the energy loss peaks at 54–58 meV were ascribed to surface chemisorbed oxygen species, and the peak at 69 meV to surface nickel oxide. The chemisorbed oxygen at low coverage displayed a LEED pattern of (2×2), revealing the formation of an ordered surface structure. As the amount of oxygen increased, the energy loss peak at 54 meV shifted to 58 meV. At an O2 partial pressure of 1×10-8 Torr (1 Torr = 133.32 Pa), the AES ratio of O/Ni remained almost unchanged after dosing 48 L, which indicated that the surface nickel oxide was relatively stable. The surface chemisorbed oxygen species was less stable, which could change to surface nickel oxide after annealing in vacuum. CO adsorbed on Ni(111) at room temperature with tri-hollow and a-top sites. Upon annealing in vacuum, a-top CO weakened first and then disappeared completely at 520 K, whereas tri-hollow CO was much more stable. The pre-adsorption of CO could suppress O2 adsorption and oxidation of the Ni(111) surface. The presence of oxygen could then gradually remove and replace CO with O2. The surface oxygen species preferred the tri-hollow sites, resulting in more a-top adsorbed CO during the co-adsorption of CO and oxygen. The surface chemisorbed oxygen species were more active and could react with CO at room temperature; however, the surface nickel oxide was less active, and could only be reduced at a higher temperature and higher partial pressure of CO.
  • 加载中
    1. [1]

      Ertl, G. Angew. Chem. Int. Ed. 2008, 47 (19), 3524. doi: 10.1002/anie.200800480  doi: 10.1002/anie.200800480

    2. [2]

      Ertl, G. ; Knoezinger, H. ; Schueth, F. ; Weitkamp, J. Handbook of Heterogeneous Catalysis, 2nd ed. ; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2008; Vol. 8, pp. 1309–1310.

    3. [3]

      Chen, M. S. Acta Phys. -Chim. Sin. 2017, 33 (12), 2424.  doi: 10.3866/PKU.WHXB201707171

    4. [4]

      Beniya, A.; Ikuta, Y.; Isomura, N.; Hirata, H.; Watanabe, Y. ACS Catal. 2017, 7 (2), 1369. doi: 10.1021/acscatal.6b02714  doi: 10.1021/acscatal.6b02714

    5. [5]

      Netzer, F. P., Fortunelli, A. Oxide Materials at the Two-Dimensional Limit; Springer: Heidelberg, 2016; 234, pp. 119–142.

    6. [6]

      Schaub, R.; Thostrup, P.; Lopez, N.; Laegsgaard, E.; Stensgaard, I.; Norskov, J. K.; Besenbacher, F. Phys. Rev. Lett. 2001, 87 (26), 266104/1. doi:10.1103/PhysRevLett.87.266104  doi: 10.1103/PhysRevLett.87.266104

    7. [7]

      Kuhlenbeck, H.; Odoerfer, G.; Jaeger, R.; Xu, C.; Mull, T.; Baumeister, B.; Illing, G.; Menges, M.; Freund, H. J.; Weide, D.; Andresen, G.; Watson, G; Plummer, E. W. Vacuum 1990, 41 (1–3), 34. doi:10.1016/0042-207X(90)90263-X  doi: 10.1016/0042-207X(90)90263-X

    8. [8]

      Shao, S. M.; Xi, G. K.; Wang, J. R.; Li, S. L.; Yang, X. Z.; Wang, J. H.; Zhou, Z. Q.; He, T. X.; Yu, B. X. Acta Phys. -Chim. Sin. 1992, 8 (6), 767.  doi: 10.3866/PKU.WHXB19920610

    9. [9]

      Mills, G. A.; Steffgen, F. W. Catal. Rev. 1973, 8 (2), 159. doi: 10.1080/01614947408071860  doi: 10.1080/01614947408071860

    10. [10]

      Gao, J. J.; Wang, Y. L.; Ping, Y.; Hu, D. C.; Xu, G. W.; Gu, F. N.; Su, F. B. RSC Adv. 2012, 2 (6), 2358. doi: 10.1039/c2ra00632d  doi: 10.1039/c2ra00632d

    11. [11]

      Hu, D. C.; Gao, J. J.; Ping, Y.; Jia, L. H.; Gunawan, P.; Zhong, Z. Y.; Xu, G. W.; Gu, F. N.; Su, F. B. Ind. Eng. Chem. Res. 2012, 51 (13), 4875. doi: 10.1021/ie300049f  doi: 10.1021/ie300049f

    12. [12]

      Li, S. R.; Gong, J. L. Chem. Soc. Rev. 2014, 43 (21), 7245. doi: 10.1039/C4CS00223G  doi: 10.1039/C4CS00223G

    13. [13]

      Wang, Y.; Yao, L.; Wang, S. H.; Mao, D. H.; Hu, C. W. Fuel Process. Technol. 2018, 169, 199. doi: 10.1016/j.fuproc.2017.10.007  doi: 10.1016/j.fuproc.2017.10.007

    14. [14]

      Abdullah, B.; Ghani, N. A. A.; Vo, D. V. N. J. Cleaner Prod. 2017, 162, 170. doi: 10.1016/j.jclepro.2017.05.176  doi: 10.1016/j.jclepro.2017.05.176

    15. [15]

      Li, C. L.; Fu, Y. L.; Bian, G. Z. Acta Phys. -Chim. Sin. 2003, 19 (10), 902.  doi: 10.3866/PKU.WHXB20031004

    16. [16]

      Liu, C. J.; Ye, J. Y.; Jiang, J. J.; Pan, Y. X. ChemCatChem 2011, 3 (3), 529. doi: 10.1002/cctc.201000358  doi: 10.1002/cctc.201000358

    17. [17]

      Trimm, D. L. Catal. Today 1997, 37 (3), 233. doi: 10.1016/S0920-5861(97)00014-X  doi: 10.1016/S0920-5861(97)00014-X

    18. [18]

      Chen, C. S.; Lin, J. H.; You, J. H.; Yang, K. H. J. Phys. Chem. A 2010, 114 (11), 3773. doi: 10.1021/jp904434e  doi: 10.1021/jp904434e

    19. [19]

      Yuan, K. D.; Zhong, J. Q.; Zhou, X.; Xu, L. L.; Bergman, S. L.; Wu, K.; Xu, G. Q.; Bernasek, S. L.; Li, H. X.; Chen, W. ACS Catal. 2016, 6 (7), 4330. doi: 10.1021/acscatal.6b00357  doi: 10.1021/acscatal.6b00357

    20. [20]

      Zhao, Y. F.; Zhao, B.; Liu, J. J.; Chen, G. B.; Gao, R.; Yao, S. Y.; Li, M. Z.; Zhang, Q. H.; Gu, L.; Xie, J. L.; Wen, X. D.; Wu, L. Z.; Tung, C. H.; Ma, D.; Zhang, T. R. Angew. Chem. Int. Ed. 2016, 55 (13), 4215. doi: 10.1002/anie.201511334  doi: 10.1002/anie.201511334

    21. [21]

      Oku, M.; Brundle, C. R. J. Vac. Sci. Technol. 1982, 20 (3), 532. doi: 10.1116/1.571424  doi: 10.1116/1.571424

    22. [22]

      Park, R. L.; Farnsworth, H. E. J. Chem. Phys. 1964, 40 (8), 2354. doi: 10.1063/1.1725514  doi: 10.1063/1.1725514

    23. [23]

      Saiki, R.; Kaduwela, A.; Osterwalder, J.; Sagurton, M.; Fadley, C. S.; Brundle, C. R. J. Vac. Sci. Technol. A 1987, 5 (4, Pt. 1), 932. doi: 10.1116/1.574299  doi: 10.1116/1.574299

    24. [24]

      Beckerle, J. D.; Yang, Q. Y.; Johnson, A. D.; Ceyer, S. T. Surf. Sci. 1988, 195 (1), 77. doi: 10.1016/0039-6028(88)90781-9  doi: 10.1016/0039-6028(88)90781-9

    25. [25]

      Munoz-Marquez, M. A.; Tanner, R. E.; Woodruff, D. P. Surf. Sci. 2004, 565 (1), 1. doi: 10.1016/j.susc.2004.06.204  doi: 10.1016/j.susc.2004.06.204

    26. [26]

      Mu, R. T.; Fu, Q.; Xu, H.; Zhang, H.; Huang, Y. Y.; Jiang, Z.; Zhang, S.; Tan, D. L.; Bao, X. H. J. Am. Chem. Soc. 2011, 133 (6), 1978. doi: 10.1021/ja109483a  doi: 10.1021/ja109483a

    27. [27]

      Chiarello, G.; Formoso, V.; Infusino, E.; Marino, A.; Agostino, R. G.; Colavita, E. Surf. Sci. 2007, 601 (1), 104. doi: 10.1016/j.susc.2006.09.010  doi: 10.1016/j.susc.2006.09.010

    28. [28]

      Politano, A.; Chiarello, G. J. Phys. Chem. C 2011, 115 (28), 13541. doi: 10.1021/jp202212a  doi: 10.1021/jp202212a

    29. [29]

      Politano, A.; Chiarello, G. Vib. Spectrosc. 2011, 55 (2), 295. doi: 10.1016/j.vibspec.2010.12.010  doi: 10.1016/j.vibspec.2010.12.010

    30. [30]

      Zhao, B. R.; Yan, X. L.; Zhou, Y.; Liu, C. J. Ind. Eng. Chem. Res. 2013, 52 (24), 8182. doi: 10.1021/ie400688y  doi: 10.1021/ie400688y

    31. [31]

      Pan, Y. X.; Liu, C. J.; Shi, P. J. Power Sources 2008, 176 (1), 46. doi: 10.1016/j.jpowsour.2007.10.039  doi: 10.1016/j.jpowsour.2007.10.039

    32. [32]

      Chen, J. G.; Weisel, M. D.; Hall, R. B. Surf. Sci. 1991, 250 (1–3), 159. doi:10.1016/0039-6028(91)90718-8  doi: 10.1016/0039-6028(91)90718-8

    33. [33]

      Tyuliev, G. T.; Kostov, K. L. Phys. Rev. B 1999, 60 (4), 2900. doi: 10.1103/PhysRevB.60.2900  doi: 10.1103/PhysRevB.60.2900

    34. [34]

      Langell, M. A.; Nassir, M. H. J. Phys. Chem. 1995, 99 (12), 4162. doi: 10.1021/j100012a042  doi: 10.1021/j100012a042

    35. [35]

      Lambers, E. S.; Dykstal, C. N.; Seo, J. M.; Rowe, J. E.; Holloway, P. H. Oxid. Met. 1996, 45 (3/4), 301. doi: 10.1007/BF01046987  doi: 10.1007/BF01046987

    36. [36]

      Kitakatsu, N.; Maurice, V.; Marcus, P. Surf. Sci. 1998, 411 (1/2), 215. doi: 10.1016/S0039-6028(98)00372-0  doi: 10.1016/S0039-6028(98)00372-0

    37. [37]

      Kitakatsu, N.; Maurice, V.; Hinnen, C.; Marcus, P. Surf. Sci. 1998, 407 (1–3), 36. doi: 10.1016/S0039-6028(98)00089-2  doi: 10.1016/S0039-6028(98)00089-2

    38. [38]

      Rohr, F.; Wirth, K.; Libuda, J.; Cappus, D.; Baeumer, M.; Freund, H. J. Surf. Sci. 1994, 315 (1–2), L977. doi: 10.1016/0039-6028(94)90529-0  doi: 10.1016/0039-6028(94)90529-0

    39. [39]

      Erley, W.; Ibach, H.; Lehwald, S.; Wagner, H. Surf. Sci. 1979, 83 (2), 585. doi: 10.1016/0039-6028(79)90065-7  doi: 10.1016/0039-6028(79)90065-7

    40. [40]

      Chen, M. S.; Zheng, Y. P.; Wan, H. L. Top. Catal. 2013, 56 (15–17), 1299. doi: 10.1007/s11244-013-0140-0  doi: 10.1007/s11244-013-0140-0

    41. [41]

      Ertl, G. J. Mol. Catal. A-Chem. 2002, 182 (1), 10. doi: 10.1016/S1381-1169(01)00460-5  doi: 10.1016/S1381-1169(01)00460-5

  • 加载中
    1. [1]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    2. [2]

      Fei XieChengcheng YuanHaiyan TanAlireza Z. MoshfeghBicheng ZhuJiaguo Yud-Band Center Regulated O2 Adsorption on Transition Metal Single Atoms Loaded COF: A DFT Study. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-0. doi: 10.3866/PKU.WHXB202407013

    3. [3]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    4. [4]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    5. [5]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    6. [6]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    7. [7]

      Yang LiYanan DongZhihong WeiChangzeng YanZhen LiLin HeYuehui Li . Fluoride-promoted Ni-catalyzed cyanation of C–O bond using CO2 and NH3. Chinese Chemical Letters, 2025, 36(5): 110206-. doi: 10.1016/j.cclet.2024.110206

    8. [8]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    9. [9]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    10. [10]

      Hongyu TangDongming LiuJinfu HuangLiang ZhangYang TangBin HuangYanwei LiShunhua XiaoYiling SunRenheng Wang . Excellent structural stability and electrochemical properties of LiNi0.9Co0.05Mn0.05O2 material by surface Ni2+ anchoring and Cs+ doping. Chinese Chemical Letters, 2025, 36(6): 109987-. doi: 10.1016/j.cclet.2024.109987

    11. [11]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    12. [12]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    13. [13]

      Yangrui XuYewei RenXinlin LiuHongping LiZiyang Lu . NH2-UIO-66 Based Hydrophobic Porous Liquid with High Mass Transfer and Affinity Surface for Enhancing CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(11): 2403032-0. doi: 10.3866/PKU.WHXB202403032

    14. [14]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    15. [15]

      Renshu Huang Jinli Chen Xingfa Chen Tianqi Yu Huyi Yu Kaien Li Bin Li Shibin Yin . Synergized oxygen vacancies with Mn2O3@CeO2 heterojunction as high current density catalysts for Li–O2 batteries. Chinese Journal of Structural Chemistry, 2023, 42(11): 100171-100171. doi: 10.1016/j.cjsc.2023.100171

    16. [16]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    17. [17]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    18. [18]

      Ruizhi DuanXiaomei WangPanwang ZhouYang LiuCan Li . The role of hydroxyl species in the alkaline hydrogen evolution reaction over transition metal surfaces. Acta Physico-Chimica Sinica, 2025, 41(9): 100111-0. doi: 10.1016/j.actphy.2025.100111

    19. [19]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    20. [20]

      Tieping CAOYuejun LIDawei SUN . Surface plasmon resonance effect enhanced photocatalytic CO2 reduction performance of S-scheme Bi2S3/TiO2 heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 903-912. doi: 10.11862/CJIC.20240366

Metrics
  • PDF Downloads(6)
  • Abstract views(810)
  • HTML views(150)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return