Citation: LIU Hengchang, FENG Yujun. CO2-Induced Interaction between a Pentablock Nonionic Copolymer and an Anionic Fluorocarbon Surfactant[J]. Acta Physico-Chimica Sinica, ;2019, 35(4): 408-414. doi: 10.3866/PKU.WHXB201803051 shu

CO2-Induced Interaction between a Pentablock Nonionic Copolymer and an Anionic Fluorocarbon Surfactant

  • Corresponding author: FENG Yujun, yjfeng@scu.edu.cn
  • Received Date: 3 February 2018
    Revised Date: 1 March 2018
    Accepted Date: 1 March 2018
    Available Online: 5 April 2018

    Fund Project: the National Natural Science Foundation of China 21773161The project was supported by the National Natural Science Foundation of China (21773161) and the Key Program of United Foundation (Class A) of Petrochemical Industry and NSFC (U176220036)the Key Program of United Foundation (Class A) of Petrochemical Industry and NSFC U176220036

  • A polymer-surfactant complex is significant in understanding the interactions between amphiphilic molecules and has great potential for use in a vast number of industries. In addition, the stimuli-responsive polymer-surfactant complex represents a hot research topic for the colloid community. However, the use of CO2 gas to tune their interaction and the corresponding morphological change in the polymer-surfactant complex has been less documented. In this work, the commercially available triblock copolymer Pluronic F127 was used as a starting material and the macromolecular initiator Br-F127-Br was synthesized via esterification. Then, the pentablock copolymer poly(2-(diethylamino)ethyl methacrylate))-block-F127-block-poly(2-(diethylamino)ethyl methacrylate)) (PDEAEAM-b-F127-b-PDEAEMA) was prepared via atom transfer radical polymerization (ATRP) of Br-F127-Br and the monomer 2-(diethylamino)ethyl methacrylate. Both Br-F127-Br and PDEAEAM-b-F127-b-PDEAEMA were characterized by FT-IR and 1H NMR spectroscopies as well as gel permeation chromatography (GPC). The results indicated that both Br-F127-Br and PDEAEAM-b-F127-b-PDEAEMA were synthesized successfully. The CO2-responsive behavior of the pentablock copolymer was examined by tracking the changes in pH and electrical conductivity of the polymer solution after alternatingly bubbling CO2 and N2. It was found that cyclic streaming of CO2/N2 could alter the pH of the polymer solution between 7.2 and 5.3, leading to the protonation degree of PDEAEAM-b-F127-b-PDEAEMA varying between 0.26 and 0.96; this in turn varied the electrical conductivity of the polymer solution between 19.4 μS∙cm−1 and 70.6 μS∙cm−1. The reversible changes in pH and electrical conductivity of the polymer solution indicate the good CO2-stimuli responsiveness of PDEAEAM-b-F127-b-PDEAEMA. The interaction of PDEAEAM-b-F127-b-PDEAEMA with an anionic fluorocarbon surfactant potassium nonafluoro-1-butanesulfonate (C4F9SO3K) with and without CO2 was studied by ultraviolet-visible absorption spectrometry (UV-Vis), dynamic light scattering (DLS), and transmission electron microscopy (TEM). The transmittance of the mixed solution of PDEAEAM-b-F127-b-PDEAEMA and C4F9SO3K could be varied between 84% and 52% in the absence and presence of CO2, indicating the formation of aggregates with different sizes. The DLS results showed that the size of aggregates could be modified reversibly between tens of nanometers and several micrometers by bubbling CO2 and replacing CO2 by N2. The TEM image revealed the reversible morphological transition of the aggregates from spherical to wormlike micelles after bubbling CO2. The carbonic acid formed from CO2 and water can protonate the PDEAEMA in the pentablock copolymer to form PDEAEMA·H+, and thus the interaction between the pentablock copolymer and C4F9SO3K becomes strong. When CO2 is replaced by N2, PDEAEMA·H+ reverts to PDEAEMA, and the interaction becomes weak once again. It can therefore be concluded that the protonation/deprotonation process of the pentablock copolymer can be controlled by bubbling CO2/N2. The protonation/deprotonation process can "switch" the electrostatic attraction of PDEAEAM-b-F127-b-PDEAEMA to C4F9SO3K, thereby tuning the hydrophilic-lipophilic balance (HLB) of the polymer-surfactant complex reversibly, leading to the reversible morphological transition of the aggregates. The strategy of CO2-controllable morphological alteration of a polymer–surfactant complex opens a new avenue for preparing gas-sensitive soft materials.
  • 加载中
    1. [1]

      Goddard, E. D.; Hannan, R. B. J. Am. Oil Chem. Soc. 1977, 54, 561. doi: 10.1007/bf03027636  doi: 10.1007/bf03027636

    2. [2]

      Goddard, E. D. Colloids Surf. 1986, 19, 255. doi: 10.1016/0166-6622(86)80340-7  doi: 10.1016/0166-6622(86)80340-7

    3. [3]

      Goddard, E. D. Colloids Surf. 1986, 19, 301. doi: 10.1016/0166-6622(86)80341-9  doi: 10.1016/0166-6622(86)80341-9

    4. [4]

      Chen, H.; Li, E. X.; Ye, Z. B.; Han, L. J.; Luo, P. Y. Acta Phys. -Chim. Sin. 2011, 27 (3), 671.  doi: 10.3866/PKU.WHXB20110306

    5. [5]

      Zhang, W. L. Interaction of Polymer with Surfactant. Master Dissertation, Henan Normal University, Xinxiang, 2008.

    6. [6]

      Chen, H.; Wu, X. Y.; Ye, Z. B.; Han, L. J.; Luo, P. Y. Acta Phys. -Chim. Sin. 2012, 28(6), 903.  doi: 10.3866/PKU.WHXB201202171

    7. [7]

      Theato, P.; Sumerlin, B. S.; O'Reilly, R. K.; Epps, T. H., Ⅲ. Chem. Soc. Rev. 2013, 42, 7055. doi: 10.1039/c3cs90057f  doi: 10.1039/c3cs90057f

    8. [8]

      Liu, H. B.; Lin, S. J.; Feng, Y. J.; Theato, P. Polym. Chem. 2017, 8, 12. doi: 10.1039/c6py01101b  doi: 10.1039/c6py01101b

    9. [9]

      Jessop, P. G.; Mercer, S. M.; Heldebrant, D. J. Energy Environ. Sci. 2012, 5, 7240. doi: 10.1039/c2ee02912j  doi: 10.1039/c2ee02912j

    10. [10]

      Darabi, A.; Jessop, P. G.; Cunningham, M. F. Chem. Soc. Rev. 2016, 45, 4391. doi: 10.1039/c5cs00873e  doi: 10.1039/c5cs00873e

    11. [11]

      Sha, K.; Li, D. S.; Li, Y. P.; Zhang, B.; Wang, J. Y. Macromolecules2008, 41, 361. doi: 10.1021/ma0707234  doi: 10.1021/ma0707234

    12. [12]

      Xiong, X. Y.; Tam, K. C.; Gan, L. H. Macromolecules 2003, 36, 9979. doi: 10.1021/ma035292d  doi: 10.1021/ma035292d

    13. [13]

      Xiong, X. Y.; Tam, K. C.; Gan, L. H. Macromolecules 2004, 37, 3425. doi: 10.1021/ma049662p  doi: 10.1021/ma049662p

    14. [14]

      Agarwal, A.; Unfer, R.; Mallapragada, S. K. J. Controlled Release 2005, 103, 245. doi: 10.1016/j.jconrel.2004.11.022  doi: 10.1016/j.jconrel.2004.11.022

    15. [15]

      Determan, M. D.; Cox, J. P.; Seifert, S.; Thiyagarajan, P.; Mallapragada, S. K. Polymer 2005, 46, 6933. doi: 10.1016/j.polymer.2005.05.138  doi: 10.1016/j.polymer.2005.05.138

    16. [16]

      Xiong, X. Y.; Tam, K. C.; Gan, L. H. J. Appl. Polym. Sci. 2006, 100, 4163. doi: 10.1002/app.23470  doi: 10.1002/app.23470

    17. [17]

      He, J. L.; Ni, P. H.; Liu, C. C. J. Polym. Sci., Part A: Polym. Chem. 2008, 46, 3029. doi: 10.1002/pola.22641  doi: 10.1002/pola.22641

    18. [18]

      Abe, M. Curr. Opin. Colloid Interface Sci. 1999, 4, 354. doi: 10.1016/s1359-0294(99)90017-1  doi: 10.1016/s1359-0294(99)90017-1

    19. [19]

      Esumi, K.; Takehana, K.; Nojima, T.; Meguro, K. Colloids Surf. 1992, 64, 15. doi: 10.1016/0166-6622(92)80157-w  doi: 10.1016/0166-6622(92)80157-w

    20. [20]

      Zhou, F.; Xie, M. X.; Chen, D. Y. Macromolecules 2014, 47, 365. doi: 10.1021/ma401589z  doi: 10.1021/ma401589z

    21. [21]

      Gröschel, A. H.; Walther, A.; Löbling, T. I.; Schmelz, J.; Hanisch, A.; Schmalz, H.; Müller, A. H. E. J. Am. Chem. Soc. 2012, 134, 13850. doi: 10.1021/ja305903u  doi: 10.1021/ja305903u

    22. [22]

      Wei, H. B.; Zhang, J. L.; Shi, N.; Liu, Y.; Zhang, B.; Zhang, J.; Wan, X. H. Chem. Sci. 2015, 6, 7201. doi: 10.1039/c5sc02020d  doi: 10.1039/c5sc02020d

    23. [23]

      Thavanesan, T.; Herbert, C.; Plamper, F. A. Langmuir 2014, 30, 5609. doi: 10.1021/la5007583  doi: 10.1021/la5007583

    24. [24]

      Liu, H. B.; Guo, Z. R.; He, S.; Yin, H. Y.; Fei, C. H.; Feng, Y. J. Polym. Chem. 2014, 5, 4756. doi: 10.1039/c4py00258j  doi: 10.1039/c4py00258j

    25. [25]

      Wang, W.; Liu, H. B.; Mu, M.; Yin, H. Y.; Feng, Y. J. Polym. Chem. 2015, 6, 2900. doi: 10.1039/c5py00053j  doi: 10.1039/c5py00053j

    26. [26]

      Li, S.; He, J. L.; Zhang, M. Z.; Wang, H. R.; Ni, P. H. Polym. Chem. 2016, 7, 1773. doi: 10.1039/c5py02017d  doi: 10.1039/c5py02017d

    27. [27]

      MacKnight, W. J.; Ponomarenko, E. A.; Tirrell, D. A. Acc. Chem. Res. 1998, 31, 781. doi: 10.1021/ar960309g  doi: 10.1021/ar960309g

    28. [28]

      Discher, D. E.; Ahmed, F. Annu. Rev. Biomed. Eng. 2006, 8, 323. doi: 10.1146/annurev.bioeng.8.061505.095838  doi: 10.1146/annurev.bioeng.8.061505.095838

    29. [29]

      Zhang, L.; Qian, J. S.; Miao, J. B.; Xia, R.; Chen, P.; Cheng, G. J. Mater. Rev. 2015, 29(12), 79.  doi: 10.11896/j.issn.1005-023X.2015.12.018

    30. [30]

      Ravey, J. C.; Stébé, M. J. Colloids Surf. A 1994, 84, 11. doi: 10.1016/0927-7757(93)02731-s  doi: 10.1016/0927-7757(93)02731-s

    31. [31]

      Li, L. Y.; Raghupathi, K.; Song, C. F.; Prasad, P.; Thayumanavan, S. Chem. Commun. 2014, 50, 13417. doi: 10.1039/c4cc03688c  doi: 10.1039/c4cc03688c

  • 加载中
    1. [1]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    2. [2]

      Ruoxi Sun Yiqian Xu Shaoru Rong Chunmiao Han Hui Xu . The Enchanting Collision of Light and Time Magic: Exploring the Footprints of Long Afterglow Lifetime. University Chemistry, 2024, 39(5): 90-97. doi: 10.3866/PKU.DXHX202310001

    3. [3]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    4. [4]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    5. [5]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    6. [6]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    7. [7]

      Xiaofei NIUKe WANGFengyan SONGShuyan YU . Self-assembly of [Pd6(L)4]8+-type macrocyclic complexes for fluorescent sensing of HSO3-. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1233-1242. doi: 10.11862/CJIC.20240057

    8. [8]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    9. [9]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    10. [10]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

    11. [11]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    12. [12]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Huafeng SHI . Construction of MnCoNi layered double hydroxide@Co-Ni-S amorphous hollow polyhedron composite with excellent electrocatalytic oxygen evolution performance. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1380-1386. doi: 10.11862/CJIC.20240378

    15. [15]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    16. [16]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    17. [17]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    18. [18]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    19. [19]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    20. [20]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

Metrics
  • PDF Downloads(9)
  • Abstract views(794)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return