Citation: ZHAO Yeliang, WANG Bing. Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules[J]. Acta Physico-Chimica Sinica, ;2018, 34(12): 1312-1320. doi: 10.3866/PKU.WHXB201803011 shu

Effect of Substrate on the Electron Spin Resonance Spectra of N@C60 Molecules

  • Corresponding author: WANG Bing, bwang@ustc.edu.cn
  • Received Date: 23 January 2018
    Revised Date: 27 February 2018
    Accepted Date: 27 February 2018
    Available Online: 1 December 2018

    Fund Project: The project was supported by the National Key Research and Development Program of China (2016YFA0200603)the National Key Research and Development Program of China 2016YFA0200603

  • The controlled coupling of spin centers is essential in the construction of molecular spin-based quantum information processing architectures. A major challenge is to induce the requisite coupling between two adjacent spins, while protecting them from neighboring spins and other environmental interactions. Owing to their native spin properties, endohedral fullerenes are attractive for use as elements in quantum information processing architectures. N@C60 is an endohedral fullerene molecule with a highly reactive nitrogen atom at the center of the carbon cage. The endohedral nitrogen is atomic and not covalently bound to the cage atoms; therefore, the nitrogen atom is chemically inert toward the outer environment. Owing to its remarkably long electron-spin lifetimes and sharp resonances, N@C60 has exceptional properties for quantum computing. The thermal stability and molecular structure of N@C60 make it a useful embodiment of a quantum bit — a fundamental element for a quantum computer. Several future quantum computer architectures based on N@C60 have been proposed, one of which is a two-dimensional, quantum-bit array on specific substrates. However, a challenging yet important task is to understand the effect of various substrates on the spin properties of the endohedral fullerene, since the interaction between the endohedral fullerene and the substrate may largely affect the spin characters of the endohedral N atom. The fabrication of an endohedral fullerene molecular array on substrates is also a challenge because high-temperature methods such as evaporation will cause decomposition of N@C60. Here we report our investigation on the electron spin resonance (ESR) of N@C60 molecules on various substrates such as Au(111), Si(111), and SiO2. In this study, N@C60 was prepared using the ion implantation method, and enrichment was performed using a multistep and recycling high-performance liquid chromatography (HPLC) system with a Cosmosil Buckyprep column. N@C60 molecular films on Au(111) substrates were prepared at room temperature. In addition, scanning tunneling microscope (STM) topography of the N@C60/C60 monolayer on Au(111) was obtained at a sample temperature of 5 K in ultra high vacuum (UHV). We found that the ESR signal of the N@C60 molecules decreases rapidly and disappeared approximately 360 min after the deposition of N@C60 on Au(111). In comparison, the ESR signal was maintained for a longer time on the Si(111) and SiO2 substrates. We propose that coupling between the Au(111) substrate and the endohedral N atoms quenches the ESR signal of the endohedral N atom, while the Si(111) and SiO2 substrates have a smaller effect on the ESR signal. This result offers useful information for the design of basic quantum computer architectures.
  • 加载中
    1. [1]

      Chaur, M. N.; Athans, A. J.; Echegoyen, L. Tetrahedron 2008, 64, 11387. doi: 10.1016/j.tet.2008.08.060  doi: 10.1016/j.tet.2008.08.060

    2. [2]

      Stevenson, S.; Rice, G.; Glass, T.; Harich, K.; Cromer, F.; Jordan, M. R.; Craft, J.; Hadju, E.; Bible, R.; Olmstead, M. M.; et al. Nature 1999, 401, 55. doi: 10.1038/43415  doi: 10.1038/43415

    3. [3]

      Wang, C. R.; Kai, T.; Tomiyama, T.; Yoshida, T.; Kobayashi, Y.; Nishibori, E.; Takata, M.; Sakata, M.; Shinohara, H. Angew. Chem. Int. Ed. 2001, 40, 397. doi: 10.1002/1521-3773(20010119)40:2<397::AID-ANIE397>3.0.CO;2-3  doi: 10.1002/1521-3773(20010119)40:2<397::AID-ANIE397>3.0.CO;2-3

    4. [4]

      Chai, Y.; Guo, T.; Jin, C.; Haufler, R. E.; Chibante, L. P. F.; Fure, J.; Wang, L.; Alford, J. M.; Smalley, R. E. J. Phys. Chem. 1991, 95, 7564. doi: 10.1021/j100173a002  doi: 10.1021/j100173a002

    5. [5]

      Yamada, M.; Akasaka, T.; Nagase, S. Acc. Chem. Res. 2010, 43 (1), 92. doi: 10.1021/ar900140n  doi: 10.1021/ar900140n

    6. [6]

      Sun, B.; Li, M.; Luo, H.; Shi, Z.; Gu, Z. Electrochim. Acta 2002, 47, 3545. doi: 10.1016/S0013-4686(02)00355-9  doi: 10.1016/S0013-4686(02)00355-9

    7. [7]

      Liu, X. S.; Lei, D.; Gan, L. H. Acta Phys. -Chim. Sin. 2016, 32, 929.  doi: 10.3866/PKU.WHXB201601221

    8. [8]

      Sun, D. Y.; Liu, Z. Y.; Guo, X. H.; Xu, W. G.; Ji, Y. P.; Liu, S. Y. Acta Phys. -Chim. Sin. 1996, 12, 1110.  doi: 10.3866/PKU.WHXB19961213

    9. [9]

      Sun, D. Y.; Liu, Z. Y.; Guo, X. H.; Xu, W. G.; Ji, Y. P.; Liu, S. Y. Acta Phys. -Chim. Sin. 1996, 12, 873.  doi: 10.3866/PKU.WHXB19961003

    10. [10]

      Alvarez, M. M.; Gillan, E. G.; Holczer, K.; Kaner, R. B.; Min, K. S.; Whetten, R. L. J. Phys. Chem. 1991, 95, 10561. doi: 10.1021/j100179a014  doi: 10.1021/j100179a014

    11. [11]

      Stevenson, S.; Mackey, M. A.; Stuart, M. A.; Phillips, J. P.; Easterling, M. L.; Chancellor, C. J.; Olmstead, M. M.; Balch, A. L. J. Am. Chem. Soc. 2008, 130, 11844. doi: 10.1021/ja803679u  doi: 10.1021/ja803679u

    12. [12]

      Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Poreda, R. J.; Science 1993, 259, 1428. doi: 10.1126/science.259.5100.1428  doi: 10.1126/science.259.5100.1428

    13. [13]

      Saunders, M.; Cross, R. J.; Jiménez-Vázquez, H. A.; Shimshi, R.; Khong, A. Science 1996, 271, 1693. doi: 10.1126/science.271.5256.1693  doi: 10.1126/science.271.5256.1693

    14. [14]

      Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Mroczkowski, S.; Freedberg, D. I.; Anet, F. A. L. Nature 1994, 367, 256. doi: 10.1038/367256a0  doi: 10.1038/367256a0

    15. [15]

      Murphy, T. A.; Pawlik, Th; Weidinger, A.; Höhne, M.; Alcala, R.; Spaeth, J. M. Phys. Rev. Lett. 1996, 77, 1075. doi: 10.1103/PhysRevLett.77.1075  doi: 10.1103/PhysRevLett.77.1075

    16. [16]

      Weidinger, A.; Waiblinger, M.; Pietzak, B.; Murphy, T. A. Appl. Phys. A 1998, 66, 287. doi: 10.1007/s003390050668  doi: 10.1007/s003390050668

    17. [17]

      Dietel, E.; Hirsch, A.; Pietzak, B.; Waiblinger, M.; Lips, K.; Weidinger, A.; Gruss, A.; Dinse, K. J. Am. Chem. Soc. 1999, 121, 2432. doi: 10.1021/ja983812s  doi: 10.1021/ja983812s

    18. [18]

      Greer, J. C. Chem. Phys. Lett. 2000, 326, 567. doi: 10.1016/S0009-2614(00)00839-3  doi: 10.1016/S0009-2614(00)00839-3

    19. [19]

      Harneit, W. Phys. Rev. A 2000, 65, 032322. doi: 10.1103/PhysRevA.65.032322  doi: 10.1103/PhysRevA.65.032322

    20. [20]

      Pietzak, B.; Waiblinger, M.; Murphy, T. A.; Weidinger, A.; Höhne, M.; Dietel, E.; Hirsch, A. Chem. Phys. Lett. 1997, 279, 259. doi: 10.1016/S0009-2614(97)01100-7  doi: 10.1016/S0009-2614(97)01100-7

    21. [21]

      Goedde, B.; Waiblinger, M.; Jakes, P.; Weiden, N.; Dinse, K.; Weidinger, A. Chem. Phys. Lett. 2001, 334, 12. doi: 10.1016/S0009-2614(00)01406-8  doi: 10.1016/S0009-2614(00)01406-8

    22. [22]

      Wakahara, T.; Matsunaga, Y.; Katayama, A.; Maeda, Y.; Kako, M.; Akasaka, T.; Okamura, M.; Kato, T.; Choe, Y.; Kobayashi, K.; et al. Chem. Commun. 2003, 23, 2940. doi: 10.1039/B309470G  doi: 10.1039/B309470G

    23. [23]

      Liu, G.; Khlobystov, A. N.; Ardavan, A.; Briggs, G. A. D.; Porfyrakis, K. Chem. Phys. Lett. 2011, 508, 187. doi: 10.1016/j.cplett.2011.04.039  doi: 10.1016/j.cplett.2011.04.039

    24. [24]

      Farrington, B. J.; Jevric, M.; Rance, G. A.; Ardavan, A.; Khlobystov, A. N.; Briggs, G. A. D.; Porfyrakis, K. Angew. Chem. Int. Ed. 2012, 51, 3587. doi: 10.1002/anie.201107490  doi: 10.1002/anie.201107490

    25. [25]

      Liu, G.; Khlobystov, A. N.; Charalambidis, G.; Coutsolelos, A. G.; Briggs, G. A. D.; Porfyrakis, K. J. Am. Chem. Soc. 2012, 134, 1938. doi: 10.1021/ja209763u  doi: 10.1021/ja209763u

    26. [26]

      Liu, G.; Gimenez-Lopez, M.; Jevric, M.; Khlobystov, A. N.; Briggs, G. A. D.; Porfyrakis, K. J. Phys. Chem. B 2013, 117, 5925. doi: 10.1021/jp401582j  doi: 10.1021/jp401582j

    27. [27]

      Plant, S. R.; Jevric, M.; Morton, J. J. L.; Ardavan, A.; Khlobystov, A. N.; Briggs, G. A. D.; Porfyrakis, K. Chem. Sci. 2013, 4, 2971. doi: 10.1039/c3sc50395j  doi: 10.1039/c3sc50395j

    28. [28]

      Zhou, S.; Rasovic, I.; Briggs, G. A. D.; Porfyrakis, K. Chem. Commun. 2015, 51, 7096. doi: 10.1039/c5cc01459j  doi: 10.1039/c5cc01459j

    29. [29]

      Benjamin, S. C.; Ardavan, A.; Briggs, G. A. D.; Britz, D. A.; Gunlycke, D.; Jefferson, J.; Jones, M. A. G.; Leigh, D. F.; Lovett, B. W.; Khlobystov, A. N.; et al. J. Phys.: Condens. Matter 2006, 18, 867. doi: 10.1088/0953-8984/18/21/S12  doi: 10.1088/0953-8984/18/21/S12

    30. [30]

      Waiblinger, M.; Lips, K.; Harneit, W.; Weidinger, A.; Dietel, E.; Hirsch, A. Phys. Rev. B 2001, 64, 159901. doi: 10.1103/PhysRevB.64.159901  doi: 10.1103/PhysRevB.64.159901

    31. [31]

      Mauser, H.; Hirsch, A.; van Eikema Hommes, N. J. R.; Clark, T.; Pietzak, B.; Weidinger, A.; Dunsch, L. Angew. Chem. Int. Ed. 1997, 36, 2835. doi: 10.1002/anie.199728351  doi: 10.1002/anie.199728351

    32. [32]

      Song, X.; Ma, Y.; Wang, C.; Luo, Y. Chem. Phys. Lett. 2011, 517, 199. doi: 10.1016/j.cplett.2011.10.045  doi: 10.1016/j.cplett.2011.10.045

    33. [33]

      Jakes, P; Dinse, K; Meyer, C.; Harneit, W.; Weidinger, A. Phys. Chem. Chem. Phys. 2003, 5, 4080. doi: 10.1039/B308284A  doi: 10.1039/B308284A

    34. [34]

      Waiblinger, M.; Goedde, B.; Lips, K.; Harneit, W.; Jakes, P.; Weidinger, A.; Dinse, K. AIP Conf. Proc. 2000, 544, 195. doi: 10.1063/1.1342498  doi: 10.1063/1.1342498

    35. [35]

      Warner, M.; Din, S.; Tupitsyn, I. S.; Morley, G. W.; Stoneham, A. M.; Gardener, J. A.; Wu, Z.; Fisher, A. J.; Heutz, S.; Kay, C. W. M.; et al. Nature 2013, 503, 504. doi: 10.1038/nature12597  doi: 10.1038/nature12597

  • 加载中
    1. [1]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    2. [2]

      Qianqian LiuXing DuWanfei LiWei-Lin DaiBo Liu . Synergistic Effects of Internal Electric and Dipole Fields in SnNb2O6/Nitrogen-Enriched C3N5 S-Scheme Heterojunction for Boosting Photocatalytic Performance. Acta Physico-Chimica Sinica, 2024, 40(10): 2311016-0. doi: 10.3866/PKU.WHXB202311016

    3. [3]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    4. [4]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    5. [5]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    6. [6]

      Ximeng CHIJianwei WEIYunyun WANGWenxin DENGJiayi DAIXu ZHOU . First-principles study of the electronic structure and optical properties of Au and I doped-inorganic lead-free double perovskite Cs2NaBiCl6. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1371-1379. doi: 10.11862/CJIC.20240401

    7. [7]

      Yanjie LiChaoqun QuSiqi MengJiaqi HuZe GaoHongji XuRui GaoMing Feng . Revealing electronic state evolution of Co(Ⅱ)/Co(Ⅲ) in CoO (111) plane during OER process through magnetic measurement. Chinese Chemical Letters, 2025, 36(3): 109872-. doi: 10.1016/j.cclet.2024.109872

    8. [8]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    9. [9]

      Donghui PANYuping XUXinyu WANGLizhen WANGJunjie YANDongjian SHIMin YANGMingqing CHEN . Preparation and in vivo tracing of 68Ga-labeled PM2.5 mimetic particles for positron emission tomography imaging. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 669-676. doi: 10.11862/CJIC.20230468

    10. [10]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    11. [11]

      Xue XinQiming QuIslam E. KhalilYuting HuangMo WeiJie ChenWeina ZhangFengwei HuoWenjing Liu . Hetero-phase zirconia encapsulated with Au nanoparticles for boosting electrocatalytic nitrogen reduction. Chinese Chemical Letters, 2024, 35(5): 108654-. doi: 10.1016/j.cclet.2023.108654

    12. [12]

      Guorong LiYijing WuChao ZhongYixin YangZian Lin . Predesigned covalent organic framework with sulfur coordination: Anchoring Au nanoparticles for sensitive colorimetric detection of Hg(Ⅱ). Chinese Chemical Letters, 2024, 35(5): 108904-. doi: 10.1016/j.cclet.2023.108904

    13. [13]

      Huihui LIUBaichuan ZHAOChuanhui WANGZhi WANGCongyun ZHANG . Green synthesis of MIL-101/Au composite particles and their sensitivity to Raman detection of thiram. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2021-2030. doi: 10.11862/CJIC.20240059

    14. [14]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    15. [15]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    16. [16]

      Yaxuan Jin Chao Zhang Guigang Zhang . Atomically dispersed low-valent Au on poly(heptazine imide) boosts photocatalytic hydroxyl radical production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100414-100414. doi: 10.1016/j.cjsc.2024.100414

    17. [17]

      Yongsheng XuLisha YaoJian LiYanzhao DongDongyang XieMiaomiao ZhangFeng LiYunsheng DaiJinli ZhangHaiyang Zhang . Dual-ligand engineering over Au-based catalyst for efficient acetylene hydrochlorination. Chinese Chemical Letters, 2025, 36(3): 110318-. doi: 10.1016/j.cclet.2024.110318

    18. [18]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    19. [19]

      Peng ZHOUXiao CAIQingxiang MAXu LIU . Effects of Cu doping on the structure and optical properties of Au11(dppf)4Cl2 nanocluster. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1254-1260. doi: 10.11862/CJIC.20240047

    20. [20]

      Le ZhangHui-Yu XieXin LiLi-Ying SunYing-Feng Han . SOMO-HOMO level conversion in triarylmethyl-cored N-heterocyclic carbene-Au(I) complexes triggered by selecting coordination halogens. Chinese Chemical Letters, 2024, 35(11): 109465-. doi: 10.1016/j.cclet.2023.109465

Metrics
  • PDF Downloads(12)
  • Abstract views(700)
  • HTML views(114)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return