Citation: CHEN Xi, ZHANG Shengli. Modulation of Molecular Sensing Properties of Graphdiyne Based on 3d Impurities[J]. Acta Physico-Chimica Sinica, ;2018, 34(9): 1061-1073. doi: 10.3866/PKU.WHXB201801311 shu

Modulation of Molecular Sensing Properties of Graphdiyne Based on 3d Impurities

  • Corresponding author: ZHANG Shengli, zhangsl@mail.xjtu.edu.cn
  • Received Date: 7 December 2017
    Revised Date: 24 January 2018
    Accepted Date: 25 January 2018
    Available Online: 1 October 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (11774280)the National Natural Science Foundation of China 11774280

  • In recent years, the successful preparation of single-layer graphene, MoS2, and other two-dimensional materials has started a new era of two-dimensional materials.The potential applications of two-dimensional materials in emerging electronics have drawn widespread attention.Two-dimensional carbon materials, with their unique properties, have become the research hotspot of condensed matter physics, nanoelectronics, and biological medicine.The remarkable success in preparing graphene provides additional possibilities for developing sensitive biodevices and medicine systems.However, graphene is gapless and thus is unsuitable for building nanoelectronic devices or biosensors due to the too low on/off current ratio.More than 20 years ago, graphyne and its family (viz.graphdiyne, graphyne-3, etc.), as hypothetical C allotropes, were theoretically predicted to be semiconductors with a layered structure.Recently, graphdiyne was successfully synthesized on the surface of copper via a cross-coupling reaction using hexaethynylbenzene.Graphdiyne, as a new two-dimensional carbon material with semiconductor properties and a unique porous structure, is more advantageous than graphene for nanoelectronic and biosensing applications.As the first discovered semiconducting two-dimensional carbon material, with independent intellectual property rights in China, graphdiyne has great research significance.Compared with graphene, graphdiyne has a unique structure with larger pores composed of high π-conjugated acetylenic bonds, which may facilitate strong adsorption to biomolecules.Therefore, further research is needed to reveal how the physical properties of graphdiyne can be modulated effectively to meet the requirements of practical applications.The interaction between biological molecules and materials is an important subject of research in condensed matter physics and materials science.Detailed understanding of the interactions between graphdiyne and small molecules may facilitate the development of advanced biological applications such as biosensors for the detection of biomolecules and living cells, drug delivery systems, and cell imaging technologies.In sensitive analysis, the ultimate goal is to achieve reliable detection of trace amounts of molecules.In this work, first-principles calculations were employed to investigate the electronic structure of graphdiyne nanoribbons and the adsorption of graphdiyne to small molecules.To improve the chemical response of graphdiyne to single molecules, we considered modifying graphdiyne by doping 3d transition metal atoms.We chose Sc and Ti, which have the largest adsorption energies on graphdiyne, and studied the room-temperature stabilities of Sc-and Ti-doped graphdiyne and the possibility of using Sc-and Ti-doped graphdiyne as materials for molecular sensing.Finally, we investigated the interaction between graphdiyne and amino acid molecules and discovered that the dispersion force plays a large role in the interaction.The influence of amino acids on the electronic transport properties of graphdiyne was also studied, and the potential applications of graphdiyne to biosensors were investigated.
  • 加载中
    1. [1]

      Gu, Z. B.; Ji, G. H.; Lu, M. H. J. Nanjing Tech. Univ. (Natural Science Edition) 2010, 32, 105.  doi: 10.3969/j.issn.1671-7627.2010.03.021

    2. [2]

      Li, X. W.; Wang, Q.; Jena, P. J. Phys. Chem. C 2011, 115, 19621.doi: 10.1021/jp206667r  doi: 10.1021/jp201062m

    3. [3]

      Li, X. W.; Wang, Q.; Jena, P. J. Phys. Chem. C 2011, 115, 19621. doi: 10.1021/jp206667r  doi: 10.1021/jp206667r

    4. [4]

      Kang, J.; Li, J. B.; Wu, F. M. J. Phys. Chem. C 2011, 115, 20466. doi: 10.1021/jp206751m  doi: 10.1021/jp206751m

    5. [5]

      Sun, H. H.; Li, H. J.; Shen, X. T. J. Inorg. Mater. 2011, 26, 669. doi: 10.3724/sp.j.1077.2011.10918  doi: 10.3724/sp.j.1077.2011.10918

    6. [6]

      Han, L. J.; Li, T. H.; Liu, J. J. New Carbon Mater. 2004, 19, 97. doi: 10.3321/j.issn:1007-8827.2004.02.004  doi: 10.3321/j.issn:1007-8827.2004.02.004

    7. [7]

      Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 10452. doi: 10.1073/pnas.0502848102  doi: 10.1073/pnas.0502848102

    8. [8]

      Geim, A. K.; Novoselov, K. S. Nat. Mat. 2007, 6, 183. doi: 10.1038/nmat1849  doi: 10.1038/nmat1849

    9. [9]

      Geim, A. K.; MacDonald, A. H. Phys. Today 2007, 60, 35. doi: 10.1063/1.2774096  doi: 10.1063/1.2774096

    10. [10]

      Zhang, Y. B.; Tan, Y. W.; Stormer, H. L.; Kim, P. Nature 2005, 438, 201.doi: 10.1038/nature04235  doi: 10.1038/nature04235

    11. [11]

      Williams, J. R.; DiCarlo, L.; Marcus, C. M. Science 2007, 317, 638. doi: 10.1126/science.1144657  doi: 10.1126/science.1144657

    12. [12]

      Baughman, R. H.; Eckhardt, H.; Kertesz, M. J. Chem. Phys. 1987, 87, 6687. doi: 10.1063/1.453405  doi: 10.1063/1.453405

    13. [13]

      Narita, N.; Nagai, S.; Suzuki, S.; Nakao, K. Phys. Rev. B 2000, 62, 11146. doi: 10.1103/PhysRevB.62.11146  doi: 10.1103/PhysRevB.62.11146

    14. [14]

      Li, G.; Li, Y.; Liu, H.; Guo ,Y.; Lia, Y.; Zhua, D. Chem. Commun. 2010, 46, 3256. doi: 10.1039/b922733d  doi: 10.1039/b922733d

    15. [15]

      Jia, Z.; Li, Y.; Zuo, Z.; Liu, H.; Huang, C.; Li, Y. Acc. Chem. Res. 2017, 50, 2470. doi: 10.1021/acs.accounts.7b00205  doi: 10.1021/acs.accounts.7b00205

    16. [16]

      Li, Y.; Xu, L.; Liu, H.; Li, Y. Chem. Soc. Rev. 2014, 43, 2572. doi: 10.1039/c3cs60388a  doi: 10.1039/c3cs60388a

    17. [17]

      Ivanovskii, A. L. Prog. Solid State Chem. 2013, 41, 1. doi: 10.1016/j.progsolidstchem.2012.12.001  doi: 10.1016/j.progsolidstchem.2012.12.001

    18. [18]

      Li, M.; Wang, Z. K.; Kang, T.; Yang, Y.; Gao, X.; Hsu, C. S.; Li, Y.; Liao, L. S. Nano Energy 2018, 43, 47. doi: 10.1016/j.nanoen.2017.11.008  doi: 10.1016/j.nanoen.2017.11.008

    19. [19]

      Kuang, C.; Tang, G.; Jiu, T.; Yang, H.; Liu, H.; Li, B.; Luo, W.; Li, X.; Zhang, W.; Lu, F.; et al. Nano Lett. 2015, 15, 2756. doi: 10.1021/acs.nanolett.5b00787  doi: 10.1021/acs.nanolett.5b00787

    20. [20]

      Xiao, J.; Shi, J.; Liu, H.; Xu, Y.; Lv, S.; Luo, Y.; Li, D.; Meng, Q.; Li, Y. Adv. Energy Mat. 2015, 5, 1401943. doi: 10.1002/aenm.201401943  doi: 10.1002/aenm.201401943

    21. [21]

      Hansma, P. K.; Elings, V. B.; Marti, O.; Bracker, C. E. Science 1988, 242, 209. doi: 10.1126/science.3051380  doi: 10.1126/science.3051380

    22. [22]

      Magde, D.; Webb, W. W.; Elson, E. Phys. Rev. Lett. 1972, 29, 705. doi: 10.1103/PhysRevLett.29.705  doi: 10.1103/PhysRevLett.29.705

    23. [23]

      Hla, S. W.; Rieder, K. H. Annu. Rev. Phys. Chem. 2003, 54, 307. doi: 10.1146/annurev.physchem.54.011002.103852  doi: 10.1146/annurev.physchem.54.011002.103852

    24. [24]

      Deniz, A. A.; Laurence, T. A.; Dahan, M.; Chemla, D. S.; Schultz, P. G.; Weiss, S. Annu. Rev. Phys. Chem. 2001, 52, 233. doi: 10.1146/annurev.physchem.52.1.233  doi: 10.1146/annurev.physchem.52.1.233

    25. [25]

      Kim, H. D.; Nienhaus, G. U.; Ha, T.; Orr, J. W.; Williamson, J. R.; Chu, S. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 4284. doi: 10.1073/pnas.032077799  doi: 10.1073/pnas.032077799

    26. [26]

      Xie, X. S.; Trautman, J. K. Annu. Rev. Phys. Chem. 1998, 49, 441. doi: 10.1146/annurev.physchem.49.1.441  doi: 10.1146/annurev.physchem.49.1.441

    27. [27]

      Walter, N. G.; Huang, C. Y.; Manzo, A. J.; Sobhy, M. A. Nat. Methods 2008, 5, 475. doi: 10.1038/nmeth.1215  doi: 10.1038/nmeth.1215

    28. [28]

      Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Nat. Mater. 2007, 6, 652. doi: 10.1038/nmat1967  doi: 10.1038/nmat1967

    29. [29]

      Sun, J.; Muruganathan, M.; Mizuta, H. Sci. Adv. 2016, 2, e1501518. doi: 10.1126/sciadv.1501518  doi: 10.1126/sciadv.1501518

    30. [30]

      Yavari, F.; Castillo, E.; Gullapalli, H.; Ajayan, P. M.; Koratkar, N. Appl. Phys. Lett. 2012, 100, 203120. doi: 10.1063/1.4720074  doi: 10.1063/1.4720074

    31. [31]

      Rumyantsev, S.; Liu, G. X.; Potyrailo, R. A.; Balandin, A. A.; Shur, M. S. IEEE Sens. J. 2013, 13, 2818. doi: 10.1109/JSEN.2013.2251627  doi: 10.1109/JSEN.2013.2251627

    32. [32]

      Crick, C. R.; Sze, J. Y. Y.; Rosillo-Lopez, M.; Salzmann, C. G.; Edel, J. B. ACS Appl. Mater. Interfaces 2015, 7, 18188. doi: 10.1021/acsami.5b06212  doi: 10.1021/acsami.5b06212

    33. [33]

      Ding, J.; Qiao, Z.; Feng, W.; Yao, Y.; Niu, Q. Phys. Rev. B 2011, 84, 195444. doi: 10.1103/PhysRevB.84.195444  doi: 10.1103/PhysRevB.84.195444

    34. [34]

      Li, K.; Li, Y.; Tang, H.; Jiao, M.; Wang, Y.; Wu, Z. RSC Adv. 2015, 5, 16394. doi: 10.1039/C4RA15937C  doi: 10.1039/C4RA15937C

    35. [35]

      Soler, J. M.; Artacho, E.; Gale, J. D.; García, A.; Junquera, J.; Ordejón, P.; Sánchez-Portal, D. J. Phys.: Condens. Matter 2002, 14, 2745. doi: 10.1088/0953-8984/14/11/302  doi: 10.1088/0953-8984/14/11/302

    36. [36]

      Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. doi: 10.1103/PhysRevLett.77.3865  doi: 10.1103/PhysRevLett.77.3865

    37. [37]

      Grimme, S. J. Comp. Chem. 2006, 27, 1787. doi: 10.1002/jcc.20495  doi: 10.1002/jcc.20495

    38. [38]

      Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993. doi: 10.1103/PhysRevB.43.1993  doi: 10.1103/PhysRevB.43.1993

    39. [39]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2003, 118, 8207. doi: 10.1063/1.1564060  doi: 10.1063/1.1564060

    40. [40]

      Heyd, J.; Scuseria, G. E.; Ernzerhof, M. J. Chem. Phys. 2006, 124, 219906. doi: 10.1063/1.2204597  doi: 10.1063/1.2204597

    41. [41]

      Kresse, G.; Furthmiiller, J. Comp. Mat. Sci. 1996, 6, 15. doi: 10.1063/1.220459710.1016/0927-0256(96)00008-0  doi: 10.1063/1.220459710.1016/0927-0256(96)00008-0

    42. [42]

      Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. doi: 10.1016/0022-3093(95)00355-X  doi: 10.1016/0022-3093(95)00355-X

    43. [43]

      Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. doi: 10.1103/PhysRevB.54.11169  doi: 10.1103/PhysRevB.54.11169

    44. [44]

      Taylor, J.; Guo, H.; Wang, J. Phys. Rev. B 2001, 63, 245407. doi: 10.1103/PhysRevB.63.245407  doi: 10.1103/PhysRevB.63.245407

    45. [45]

      Brandbyge, M.; Mozos, J. L.; Ordejón, P.; Taylor, J.; Stokbro, K. Phys. Rev. B 2002, 65, 165401. doi: 10.1103/PhysRevB.65.165401  doi: 10.1103/PhysRevB.65.165401

    46. [46]

      Long, M. Q.; Tang, L.; Wang, D. ACS Nano 2011, 5, 2593. doi: 10.1021/nn102472s  doi: 10.1021/nn102472s

    47. [47]

      Luo, G.; Qian, X.; Liu, H.; Qin, R.; Zhou, J.; Li, L.; Gao, Z.; Wang, E.; Mei, W. N.; et al. Nagase, S. Phys. Rev. B 2011, 84, 075439. doi: 10.1103/PhysRevB.84.075439  doi: 10.1103/PhysRevB.84.075439

    48. [48]

      Jiao, Y.; Du, A.; Hankel, M.; Zhu, Z.; Rudolph, V.; Smith, S. C. Chem. Comm. 2011, 47, 11843. doi: 10.1039/c1cc15129k  doi: 10.1039/c1cc15129k

    49. [49]

      Zhang, H.; He, X. J.; Zhao, M.; Zhang, M.; Zhao, L.; Feng, X.; Luo, Y. J. Phys. Chem. C 2012, 116, 16634. doi: 10.1021/jp304908p  doi: 10.1021/jp304908p

    50. [50]

      He, J.; Ma, S. Y.; Zhou, P.; Zhang, C. X.; He, C.; Sun, L. Z. J. Phys. Chem. C 2012, 116, 26313. doi: 10.1021/jp307408u  doi: 10.1021/jp307408u

    51. [51]

      Hu, L.; Hu, X.; Wu, X.; Du, C.; Dai, Y.; Deng, J. Phys. B 2010, 405, 3337. doi: 10.1016/j.physb.2010.05.001  doi: 10.1016/j.physb.2010.05.001

    52. [52]

      Dion, M.; Rydberg, H.; Schroder, E.; Langreth, D. C.; Lundqvist, B. I. Phys. Rev. Lett. 2004, 92, 246401. doi: 10.1103/physrevlett.92.2464011  doi: 10.1103/physrevlett.92.246401

    53. [53]

      Román-Pérez, G.; Soler, J. M. Phys. Rev. Lett. 2009, 103, 096102. doi: 10.1103/PhysRevLett.103.096102  doi: 10.1103/PhysRevLett.103.096102

    54. [54]

      Wang, M. H.; Guo, Y. N.; Wang, Q.; Zhang, X. S. Y.; Huang, J. J.; Lu, X.; Wang, K. F.; Zhang, H. P.; Leng, Y. Chem. Phys. Lett. 2014, 599, 86. doi: 10.1016/j.cplett.2014.03.024  doi: 10.1016/j.cplett.2014.03.024

  • 加载中
    1. [1]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    2. [2]

      Chunling QinShuang ChenHassanien GomaaMohamed A. ShenashenSherif A. El-SaftyQian LiuCuihua AnXijun LiuQibo DengNing Hu . Regulating HER and OER Performances of 2D Materials by the External Physical Fields. Acta Physico-Chimica Sinica, 2024, 40(9): 2307059-0. doi: 10.3866/PKU.WHXB202307059

    3. [3]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    4. [4]

      Pengyu DongYue JiangZhengchi YangLicheng LiuGu LiXinyang WenZhen WangXinbo ShiGuofu ZhouJun-Ming LiuJinwei Gao . NbSe2 Nanosheets Improved the Buried Interface for Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2407025-0. doi: 10.3866/PKU.WHXB202407025

    5. [5]

      Jia Zhou Huaying Zhong . Experimental Design of Computational Materials Science Combined with Machine Learning. University Chemistry, 2025, 40(3): 171-177. doi: 10.12461/PKU.DXHX202406004

    6. [6]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    7. [7]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    8. [8]

      Chang LIUChao ZHANGTongbu LU . Small-size Au nanoparticles anchored on pyrenyl-graphdiyne for N2 electroreduction. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 174-182. doi: 10.11862/CJIC.20240305

    9. [9]

      Shiyang HeDandan ChuZhixin PangYuhang DuJiayi WangYuhong ChenYumeng SuJianhua QinXiangrong PanZhan ZhouJingguo LiLufang MaChaoliang Tan . Pt Single-Atom-Functionalized 2D Al-TCPP MOF Nanosheets for Enhanced Photodynamic Antimicrobial Therapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100046-0. doi: 10.1016/j.actphy.2025.100046

    10. [10]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    11. [11]

      Runhua ChenQiong WuJingchen LuoXiaolong ZuShan ZhuYongfu Sun . Defective Ultrathin Two-Dimensional Materials for Photo-/Electrocatalytic CO2 Reduction: Fundamentals and Perspectives. Acta Physico-Chimica Sinica, 2025, 41(3): 2308052-0. doi: 10.3866/PKU.WHXB202308052

    12. [12]

      Xiaoli CHENZhihong LUOYuzhu XIONGAihua WANGXue CHENJiaojing SHAO . Inhibitory effect of the interlayer of two-dimensional vermiculite on the polysulfide shuttle in lithium-sulfur batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1661-1671. doi: 10.11862/CJIC.20250075

    13. [13]

      Zhengyu ZhouHuiqin YaoYoulin WuTeng LiNoritatsu TsubakiZhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-0. doi: 10.3866/PKU.WHXB202312010

    14. [14]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    15. [15]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    16. [16]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    17. [17]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    18. [18]

      Renjie XueChao MaJing HeXuechao LiYanning TangLifeng ChiHaiming Zhang . Catassembly in the Host-Guest Recognition of 2D Metastable Self-Assembled Networks. Acta Physico-Chimica Sinica, 2024, 40(9): 2309011-0. doi: 10.3866/PKU.WHXB202309011

    19. [19]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    20. [20]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

Metrics
  • PDF Downloads(15)
  • Abstract views(639)
  • HTML views(124)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return