Mechanism Construction and Simulation for Combustion of Large Hydrocarbon Fuels Applied in Wide Temperature Range
- Corresponding author: GUO Junjiang, junj_g@126.com TAN Ningxin, tanningxin@scu.edu.cn
Citation:
GUO Junjiang, TANG Shiyun, LI Rui, TAN Ningxin. Mechanism Construction and Simulation for Combustion of Large Hydrocarbon Fuels Applied in Wide Temperature Range[J]. Acta Physico-Chimica Sinica,
;2019, 35(2): 182-192.
doi:
10.3866/PKU.WHXB201801264
Biet, J.; Hakka, M. H.; Warth, V.; Glaude, P. A.; Battin-Leclerc, F. Energ. Fuel. 2008, 22(4), 2258. doi: 10.1021/ef8000746
doi: 10.1021/ef8000746
Nehse, M.; Warnatz, J.; Chevalier, C. Symp. (Int.) Combust. 1996, 26(1), 773. doi:10.1016/S0082-0784(96v)80286-4
doi: 10.1016/S0082-0784(96v)80286-4
Muharam, Y.; Warnatz, J. Phys. Chem. Chem. Phys. 2007, 9(31), 4218. doi: 10.1039/b703415f
doi: 10.1039/b703415f
Ranzi, E.; Frassoldati, A.; Granata, S.; Faravelli, T. Ind. Eng. Chem. Res. 2005, 44(14), 5170. doi: 10.1021/ie049318g
doi: 10.1021/ie049318g
Li, J.; Shao, J. X.; Liu, C. X.; Rao, H. B.; Li, Z. R.; Li, X. Y. J. Chin. Chem. Soc. 2010, 68(3), 239.
Tan, N. X.; Wang, J. B.; Hua, X. X.; Li, Z. R.; Li, X. Y. Chem. J. Chin. Univ. 2011, 32(8), 1832.
Guo, J. J.; Hua, X. X.; Wang, F.; Tan, N. X.; Li, X. Y. Acta Phys. -Chim. Sin. 2014, 30(6), 1027.
doi: 10.3866/PKU.WHXB201404031
Guo, J. J.; Wang, J. B.; Hua, X. X.; Li, Z. R.; Tan, N. X.; Li, X. Y. Chem. Res. Chin. Univ. 2014, 30(3), 480. doi:10.1007/s40242-014-3460-0
doi: 10.1007/s40242-014-3460-0
Guo, J. J.; Li, S. H.; Tan, N. X.; Li, X. Y. J. Eng. Thermophys.2014, 35(11), 2298.
Qi, F.; Li, Y. Y.; Zeng, M. F.; Zhang, F. J. Univ. Sci. Technol. China 2013, 43, 948.
doi: 10.3969/j.issn.0253-2778.2013.11.011
Dagaut, P.; Bakali, E. A.; Ristori, A. Fuel 2006, 85(7-8), 944. doi: 10.1016/j.fuel.2005.10.008
doi: 10.1016/j.fuel.2005.10.008
Humer, S.; Frassoldati, A.; Granata, S.; Faravelli, T.; Ranzi, E.; Seiser, R.; Seshadri, K. Proc. Combust. Inst. 2007, 31(1), 393. doi: 10.1016/j.proci.2006.08.008
doi: 10.1016/j.proci.2006.08.008
Wang, H.; Warner, S. J.; Oehlschlaeger, M. A.; Bounaceur, R.; Biet, J.; Glaude, P. A.; Battin-Leclerc, F. Combust. Flame 2010, 157(10), 1976. doi: 10.1016/j.combustflame.2010.04.007
doi: 10.1016/j.combustflame.2010.04.007
Dagaut, P. Phys. Chem. Chem. Phys. 2002, 4 (11), 2079. doi: 10.1039/B110787A
doi: 10.1039/B110787A
Natelson, R. H.; Kurman, M. S.; Cernansky, N. P.; Cernansky, N. P.; Miller, D. L. Fuel 2008, 87 (10-11), 2339. doi: 10.1016/j.fuel.2007.11.009
doi: 10.1016/j.fuel.2007.11.009
Dagaut, P.; Cathonnet, M. Prog. Energy Combust. Sci. 2006, 32 (1), 48. doi: 10.1016/j.pecs.2005.10.003
doi: 10.1016/j.pecs.2005.10.003
Ji, C.; Dames, E.; Wang, Y. L.; Wang, H.; Egolfopoulos, F. N. Combust. Flame 2010, 157, 277. doi: 10.1016/j.combustflame.2009.06.011
doi: 10.1016/j.combustflame.2009.06.011
Glassman, I. ; Yetter, R. A. ; Glumac, N. G. Combustion; Academic Press: San Diego, CA, USA; 2014.
Metcalfe, W. K.; Burke, S. M.; Ahmed, S. S.; Curran, H. J. Int. J. Chem. Kinet. 2013, 45, 638. doi: 10.1002/kin.20802
doi: 10.1002/kin.20802
Yao, Q.; Peng, L. J.; Li, Z. R.; Li, X. Y. Acta Phys. -Chim Sin. 2017, 33(4), 763.
doi: 10.3866/PKU.WHXB201701091
Sun, X. H.; Yao, Q.; Li, Z. R.; Wang, J. B.; Li, X. Y. Theor. Chem. Acc. 2017, 136(5), 64. doi: 10.1007/s00214-017-2086-y
doi: 10.1007/s00214-017-2086-y
Yao, Q.; Sun, X. H.; Li, Z. R.; Chen, F. F.; Li, X. Y. J. Phys. Chem. A 2017, 121 (16), 3001. doi: 10.1021/acs.jpca.6b10818
doi: 10.1021/acs.jpca.6b10818
Guo, J.; Tang, S.; Tan, N. RSC Adv. 2017, 7(71), 44809. doi: 10.1039/c7ra07734c
doi: 10.1039/c7ra07734c
Curran, H. J.; Gaffuri, P.; Pitz, W.; Westbrook, C. K. Combust. Flame 1998, 114(1-2), 149. doi: 10.1016/S0010-2180(97)00282-4
doi: 10.1016/S0010-2180(97)00282-4
Benson, S. W. Thermochemical Kinetics, 2nd ed. ; John Wiley and Sons: New York, NY, USA; 1976.
Holley, A. T.; You, X. Q.; Dames, E.; Wang, H.; Egolfopoulos, F. N. Proc. Combust. Inst. 2009, 32(1), 1157. doi:10.1016/j.proci.2008.05.067
doi: 10.1016/j.proci.2008.05.067
Benson, S. W. Prog. Energy Combust. Sci. 1981, 7, 125. doi: 10.1016/0360-1285(81)90007-1
doi: 10.1016/0360-1285(81)90007-1
Westbrook, C. K.; Pitz, W. J.; Herbinet, O.; Curran, H. J.; Silke, E. J. Combust. Flame 2009, 156(1), 181. doi: 10.1016/j.combustflame.2008.07.014
doi: 10.1016/j.combustflame.2008.07.014
CHEMKIN-PRO 15092; Reaction Design: San Diego, CA, USA, 2010.
Pfahl, U.; Fieweger, K.; Adomeit, G. Symp. (Int.) Combust. 1996, 26(1), 781. doi: 10.1016/S0082-0784(96)80287-6
doi: 10.1016/S0082-0784(96)80287-6
Zhang, W. F.; Xian, L. Y.; Yong, K. L.; He, J. N.; Zhang, C. H.; Li, P.; Li, X. Y. Acta Phys. -Chim Sin. 2016, 32(9), 2216.
doi: 10.3866/PKU.WHXB201605162
Chang, Y. C.; Jia, M.; Liu, Y. D.; Li, Y. P.; Xie, M. Z.; Yin, H. C. Energy Fuels 2013, 27, 3467. doi: 10.1016/j.combustflame.2013.02.017
doi: 10.1016/j.combustflame.2013.02.017
Dagaut, P.; Reuillon, M.; Cathonnet, M. Combust. Sci. Technol. 1994, 103(1-6), 349. doi: 10.1080/00102209408907703
doi: 10.1080/00102209408907703
Mzé-Ahmed, A.; Hadj-Ali, K.; Dagaut, P.; Dayma, G. Energy Fuels 2012, 26(7), 4253. doi: 10.1021/ef300588j
doi: 10.1021/ef300588j
Pepiot-Desjardins, P.; Pitsch, H. Combust. Flame 2008, 154(1), 67. doi: 10.1016/j.combustflame.2007.10.020
doi: 10.1016/j.combustflame.2007.10.020
Li, S. H.; Li, R.; Guo, J. J.; Tan, N. X.; Wang, F.; Li, X. Y. Acta Phys. -Chim. Sin. 2016, 32(7), 1623.
doi: 10.3866/PKU.WHXB201604084
Lu, T. F.; Law, C. K. Combust. Flame 2006, 144(1-2), 24. doi:10.1016/j.combustflame.2005.02.015
doi: 10.1016/j.combustflame.2005.02.015
Jiang, Y.; Qiu, R. Acta Phys. -Chim. Sin. 2009, 25, 1019.
doi: 10.3866/PKU.WHXB20090426
Kumar, K.; Mittal, G.; Sung, C. J.; Law, C. K. Combust. Flame 2008, 153(3), 343. doi:10.1016/j.combustflame.2007.11.012
doi: 10.1016/j.combustflame.2007.11.012
Weilai Yu , Chuanbiao Bie . Unveiling S-Scheme Charge Transfer Mechanism. Acta Physico-Chimica Sinica, 2024, 40(4): 2307022-0. doi: 10.3866/PKU.WHXB202307022
Chi Zhang , Yi Xu , Xiaopeng Guo , Zian Jie , Ling Li . 五彩斑斓的秘密——物质显色机理. University Chemistry, 2025, 40(6): 266-275. doi: 10.12461/PKU.DXHX202407061
Yingchun ZHANG , Yiwei SHI , Ruijie YANG , Xin WANG , Zhiguo SONG , Min WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078
Yi Li , Zhaoxiang Cao , Peng Liu , Xia Wu , Dongju Zhang . Revealing the Coloration and Color Change Mechanisms of the Eriochrome Black T Indicator through Computational Chemistry and UV-Visible Absorption Spectroscopy. University Chemistry, 2025, 40(3): 132-139. doi: 10.12461/PKU.DXHX202405154
Xudong Liu , Huili Fan , Junping Xiao , Min Yang , Yan Li . Teaching Approaches to the AE + AN Mechanism of Electrophilic Addition Reactions between Olefins and Inorganic Acids in Organic Chemistry. University Chemistry, 2025, 40(7): 367-372. doi: 10.12461/PKU.DXHX202409041
Kexin Yan , Zhaoqi Ye , Lingtao Kong , He Li , Xue Yang , Yahong Zhang , Hongbin Zhang , Yi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019
Xiaosong PU , Hangkai WU , Taohong LI , Huijuan LI , Shouqing LIU , Yuanbo HUANG , Xuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Changsheng An , Tao Liu . Decoding SEI chemistry at the lithium-metal potential. Acta Physico-Chimica Sinica, 2025, 41(9): 100101-0. doi: 10.1016/j.actphy.2025.100101
Yuejiao An , Wenxuan Liu , Yanfeng Zhang , Jianjun Zhang , Zhansheng Lu . Revealing Photoinduced Charge Transfer Mechanism of SnO2/BiOBr S-Scheme Heterostructure for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2407021-0. doi: 10.3866/PKU.WHXB202407021
Ronghao Zhao , Yifan Liang , Mengyao Shi , Rongxiu Zhu , Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101
Zhen Yao , Bing Lin , Youping Tian , Tao Li , Wenhui Zhang , Xiongwei Liu , Wude Yang . Visible-Light-Mediated One-Pot Synthesis of Secondary Amines and Mechanistic Exploration. University Chemistry, 2024, 39(5): 201-208. doi: 10.3866/PKU.DXHX202311033
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Menglan Wei , Xiaoxia Ou , Yimeng Wang , Mengyuan Zhang , Fei Teng , Kaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105
Shuang Cao , Bo Zhong , Chuanbiao Bie , Bei Cheng , Feiyan Xu . Insights into Photocatalytic Mechanism of H2 Production Integrated with Organic Transformation over WO3/Zn0.5Cd0.5S S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(5): 2307016-0. doi: 10.3866/PKU.WHXB202307016
Tianlong Zhang , Rongling Zhang , Hongsheng Tang , Yan Li , Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006
Dongdong Yao , JunweiGu , Yi Yan , Junliang Zhang , Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128