Citation: ZHAO Mingyu, ZHU Lin, FU Bowen, JIANG Suhua, ZHOU Yongning, SONG Yun. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Physico-Chimica Sinica, ;2019, 35(2): 193-199. doi: 10.3866/PKU.WHXB201801241 shu

Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets

  • Corresponding author: SONG Yun, songyun@fudan.edu.cn
  • Received Date: 11 January 2018
    Revised Date: 21 January 2018
    Accepted Date: 22 January 2018
    Available Online: 24 January 2018

    Fund Project: National Natural Science Foundation of China 51601040National Natural Science Foundation of China 51572948The project was supported by the National Natural Science Foundation of China (51601040, 51572948, 51502039)National Natural Science Foundation of China 51502039

  • As a potential substitute for commercial lithium ion batteries (LIBs), sodium ion batteries (NIBs) have attracted increasing interest during the last decade. However, compared to the LIBs, the sluggish kinetics of sodium ion diffusion in NIBs due to its larger ionic radius results in deteriorated electrochemical performances, which hinders the future development and application of NIBs. Therefore, exploring anode materials that exhibit a novel kinetic mechanism is desired. Recently, extremely rapid kinetics has been realized by introducing the pseudocapacitance effect into battery systems; this effect generally refers to faradaic charge-transfer reactions, including surface or near-surface redox reactions, and fast bulk ion intercalation. To obtain a pseudocapacitance effect in battery systems, the critical step involves the rational design of a two-dimensional structure with a high conductivity. In this regard, the bimetallic sulfide thiospinel NiCo2S4 stands out by virtue of its high conductivity (1.25 × 106 S·m-1) at room temperature, which is at least two orders of magnitude higher than that of the oxide counterpart (NiCo2O4). Herein, NiCo2S4 hexagonal nanosheets with a large lateral dimension of ~2 μm and thickness ~30 nm have been successfully synthesized through coprecipitation followed by a vapor sulfidation method. As the anode material in NIBs, the NiCo2S4 nanosheets deliver a reversible capacity of 387 mAh·g-1 after 60 cycles at a current density of 1000 mA·g-1. Additionally, the NiCo2S4 nanosheets exhibit high reversible capacities of 542, 398, 347, 300, and 217 mAh·g-1 at the current densities 200, 400, 800, 1000, and 2000 mA·g-1, respectively. Ex situ X-ray diffraction analysis has been employed to reveal that the sodium ion storage process is a result of a combined Na+ intercalation and conversion reaction between Na+ and NiCo2S4. Further quantitative analysis of the kinetics has verified the extrinsic pseudocapacitance mechanism of the Na+ storage process, in which the capacitive contribution enlarges as the current density increases. The observed capacitive contribution of NiCo2S4 electrode is as high as 71% at a scan rate of 0.4 mV·s-1. This is closely attributed to the modified thin-sheet structure of NiCo2S4 and hybridization with graphene that account for the superior high-rate performance with long-term cyclability. These intriguing results shed light on a new strategy for the structural design of electrode materials for advanced NIBs. Moreover, this vapor transformation route can be extended to the preparation of other transition metal disulfides with high electrochemical activities, such as FeCo2S4, ZnCo2S4, CuCo2S4, etc.
  • 加载中
    1. [1]

      Le, Y.; Yang, J. F.; Lou, X. W. Angew. Chem. Int. Ed. 2016, 55, 13422. doi: 10.1002/anie.201606776  doi: 10.1002/anie.201606776

    2. [2]

      Chen, Y. M.; Yu, Y. M.; Li, Z.; Paik, U.; Lou, X. W. Sci. Adv. 2016, 2, 1600021. doi: 10.1126/sciadv.1600021  doi: 10.1126/sciadv.1600021

    3. [3]

      Ye, J.; Chen, T.; Chen, Q.; Chen, W.; Yu, Z.; Xu, S. J. Mater. Chem. A 2016, 4, 13194. doi: 10.1039/c6ta04196e  doi: 10.1039/c6ta04196e

    4. [4]

      Zhu, Y. J.; Fan, X. L.; Suo, L. M.; Luo, C.; Gao, T.; Wang, C. S. ACS Nano 2016, 10, 1529. doi: 10.1021/acsnano.5b07081  doi: 10.1021/acsnano.5b07081

    5. [5]

      Li, X.; Zai, J.; Xiang, S.; Liu, Y.; He, X.; Xu, Z.; Wang, K.; Ma, Z.; Qian, X. Adv. Energy Mater. 2016, 6, 1601056. doi: 10.1002/aenm.201601056  doi: 10.1002/aenm.201601056

    6. [6]

      Cabana, J.; Monconduit, L.; Larcher, D.; Palacín, M. R. Adv. Mater. 2010, 22, E170. doi: 10.1002/adma.201000717  doi: 10.1002/adma.201000717

    7. [7]

      Kim, H.; Kim, D. J.; Seo, D. H.; Yeom, M. S.; Kang, K.; Kim, D. K.; Jung, Y. Chem. Mater. 2012, 24, 1205. doi: 10.1021/cm300065y  doi: 10.1021/cm300065y

    8. [8]

      Zhu, Y. J.; Choi, S. H.; Fan, X. L.; Shin, J.; Ma, Z. H.; Zachariah, M. R.; Jang, W. C.; Wang, C. S. Adv. Energy Mater. 2017, 7, 1601578. doi: 10.1002/aenm.201601578  doi: 10.1002/aenm.201601578

    9. [9]

      Lee, E.; Brown, D. E.; Alp, E. E.; Ren, Y.; Lu, J.; Woo, J. J.; Johnson, C. S. Chem. Mater. 2015, 27, 6755. doi: 10.1021/acs.chemmater.5b02918  doi: 10.1021/acs.chemmater.5b02918

    10. [10]

      Liu, H.; Jia, M. Q.; Zhu, Q. Z.; Cao, B.; Chen, R. J.; Wang, Y.; Wu, F.; Xu, B. ACS Appl. Mater. Interfaces 2016, 8, 26878. doi: 10.1021/acsami.6b09496  doi: 10.1021/acsami.6b09496

    11. [11]

      Jache, B.; Adelhelm, P. Angew. Chem. Int. Ed. 2014, 53, 10169. doi: 10.1002/anie.201403734  doi: 10.1002/anie.201403734

    12. [12]

      Che, H.; Chen, S.; Xie, Y.; Wang, H.; Amine, K.; Liao, X.; Ma, Z. Energy Environ. Sci. 2017, 10, 1075. doi: 10.1039/C7EE00524E  doi: 10.1039/C7EE00524E

    13. [13]

      Li, T.; Xu, Y.; Xing, F.; Cao, X.; Bian, J.; Wang, N.; Wang, Z. L. Adv. Energy Mater. 2017, 7, 1700124. doi: 10.1002/aenm.201700124  doi: 10.1002/aenm.201700124

    14. [14]

      Zou, R.; Zhang, Z.; Yuen, M. F.; Sun, M.; Hu, J.; Lee, C. S.; Zhang, W. NPG Asia Mater. 2015, 7, 195. doi: 10.1038/am.2015.63  doi: 10.1038/am.2015.63

    15. [15]

      Kang, W.; Wang, Y.; Xu, J. J. Mater. Chem. A 2017, 5, 7667. doi: 10.1039/C7TA00003K  doi: 10.1039/C7TA00003K

    16. [16]

      Chen, S.; Qiao, S. Z. ACS Nano 2013, 7, 10190. doi: 10.1021/nn404444r  doi: 10.1021/nn404444r

    17. [17]

      Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Phys. Chem. Chem. Phys. 2017, 19, 11554. doi: 10.1039/C7CP00509A  doi: 10.1039/C7CP00509A

    18. [18]

      Yuan, D. X.; Huang, G.; Yin, D. M.; Wang, X. X.; Wang, C. L.; Wang, L. M. ACS Appl. Mater. Interfaces 2017, 9, 18178. doi: 10.1021/acsami.7b02176  doi: 10.1021/acsami.7b02176

    19. [19]

      Xiao, Y.; Lee, S. H.; Sun, Y. K. Adv. Energy Mater. 2016, 7, 1601329. doi: 10.1002/aenm.201601329  doi: 10.1002/aenm.201601329

    20. [20]

      Chen, S. Q.; Wu, S.; Shen, L. F.; Zhu, C. B.; Huang, Y. Y.; Xi, K.; Maier, J.; Yu, Y. Adv. Mater. 2017, 1700431. doi: 10.1002/adma.201700431  doi: 10.1002/adma.201700431

    21. [21]

      Liu, J. H. ; Zhang, H. ; Liu, X. J. ; Liu, J. S. Inorg. Chem. 2015, 32, 2331.

    22. [22]

      Kyle, C. K.; Stephany, G.; Naween, D.; Jonathan, L. S.; Souza, J. P.; Trevor, H. C.; Mark, A. C.; Adam, H.; Simon, M. H.; Mullins, B. C. J. Mater. Chem. A 2014, 2, 14209. doi: 10.1039/c4ta02684e  doi: 10.1039/c4ta02684e

    23. [23]

      Hu, T. T.; Liu, Z. G.; Borkiewicz, O. J.; Cheng, J.; Hua, X.; Dunstan, M. T.; Yu, X. Q.; Wiaderek, K.M.; Du, L. S.; Chapman, K. W.; et al. Nat. Mater. 2013, 12, 1130. doi: 10.1038/NMAT3784  doi: 10.1038/NMAT3784

    24. [24]

      Li, T.; Long, Z. H.; Zhang, D. H. Acta Phys. -Chim. Sin. 2016, 32, 573.  doi: 10.3866/PKU.WHXB201511105

    25. [25]

      Slater, M. D.; Kim, D.; Lee, E.; Johnson, C. S. Adv. Funct. Mater. 2013, 23, 947. doi: 10.1002/adfm.v23.8  doi: 10.1002/adfm.v23.8

    26. [26]

      Song, Y.; Chen, Z.; Li, Y.; Qin, C.W.; Fang, F.; Zhou, Y.; Hu, L.; Sun, D. J. Mater. Chem. A 2017, 5, 9022. doi: 10.1039/C7TA01758H  doi: 10.1039/C7TA01758H

    27. [27]

      Wu, X.; Li, S.; Wang, B.; Liu, J.; Yu, M. Phys. Chem. Chem. Phys. 2016, 18, 4505. doi: 10.1039/c5cp07541f  doi: 10.1039/c5cp07541f

    28. [28]

      Song, Y.; Cao, Y.; Wang, J.; Zhou, Y. N.; Fang, F.; Li, Y.; Gao, S. P.; Gu, Q. F.; Hu, L.; Sun, D. ACS Appl. Mater. Interfaces 2016, 3, 21334. doi: 10.1021/acsami.6b05506  doi: 10.1021/acsami.6b05506

    29. [29]

      Brezensinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Nat. Mater. 2010, 9, 146. doi: 10.1038/nmat2612  doi: 10.1038/nmat2612

    30. [30]

      Sun, R. M.; Wei, Q. L.; Sheng, J. Z.; Shi, C. W.; An, Q. Y.; Lin, S. J.; Mai, L. Q. Nano Energy 2017, 35, 396. doi: 10.1016/j.nanoen.2017.03.036  doi: 10.1016/j.nanoen.2017.03.036

    31. [31]

      Simon, P.; Gogotsi, Y.; Dunn, B. Science 2014, 343, 1210. doi: 10.1126/science.1249625  doi: 10.1126/science.1249625

    32. [32]

      Chao, D. L.; Zhu, C. R.; Yang, P. H.; Xia, X. H.; Liu, J. L.; Wang, J.; Fan, X. F.; Savilov, S. V.; Lin, J. Y.; Fan, H. J.; et al. Nat. Commun. 2016, 7, 12122. doi: 10.1038/ncomms12122  doi: 10.1038/ncomms12122

  • 加载中
    1. [1]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    2. [2]

      Jianbao MeiBei LiShu ZhangDongdong XiaoPu HuGeng Zhang . Enhanced Performance of Ternary NASICON-Type Na3.5−xMn0.5V1.5−xZrx (PO4)3/C Cathodes for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(12): 2407023-0. doi: 10.3866/PKU.WHXB202407023

    3. [3]

      Huimin LiuKezhi LiXin ZhangXuemin YinQiangang FuHejun Li . SiC Nanomaterials and Their Derived Carbons for High-Performance Supercapacitors. Acta Physico-Chimica Sinica, 2024, 40(2): 2304026-0. doi: 10.3866/PKU.WHXB202304026

    4. [4]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    5. [5]

      Yu GuoZhiwei HuangYuqing HuJunzhe LiJie Xu . Recent Advances in Iron-based Heterostructure Anode Materials for Sodium Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(3): 2311015-0. doi: 10.3866/PKU.WHXB202311015

    6. [6]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    7. [7]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    8. [8]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    9. [9]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    10. [10]

      Qing XueShengyi LiYanan ZhaoPeng ShengLi XuZhengxi LiBo ZhangHui LiBo WangLibin YangYuliang CaoZhongxue Chen . Novel Alkaline Sodium-Ion Battery Capacitor Based on Active Carbon||Na0.44MnO2 towards Low Cost, High-Rate Capability and Long-Term Lifespan. Acta Physico-Chimica Sinica, 2024, 40(2): 2303041-0. doi: 10.3866/PKU.WHXB202303041

    11. [11]

      Fan YangZheng LiuDa WangKwunNam HuiYelong ZhangZhangquan Peng . Preparation and Properties of P-Bi2Te3/MXene Superstructure-based Anode for Potassium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2303006-0. doi: 10.3866/PKU.WHXB202303006

    12. [12]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    15. [15]

      Pengyang FANShan FANQinjin DAIXiaoying ZHENGWei DONGMengxue WANGXiaoxiao HUANGYong ZHANG . Preparation and performance of rich 1T-MoS2 nanosheets for high-performance aqueous zinc ion battery cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 675-682. doi: 10.11862/CJIC.20240339

    16. [16]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    17. [17]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    18. [18]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    19. [19]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    20. [20]

      Zhenming Xu Mingbo Zheng Zhenhui Liu Duo Chen Qingsheng Liu . Experimental Design of Project-Driven Teaching in Computational Materials Science: First-Principles Calculations of the LiFePO4 Cathode Material for Lithium-Ion Batteries. University Chemistry, 2024, 39(4): 140-148. doi: 10.3866/PKU.DXHX202307022

Metrics
  • PDF Downloads(24)
  • Abstract views(920)
  • HTML views(174)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return